REPORT

PC5245 Test Valley Water Cycle Study

Client: Test Valley Borough Council

Reference: PC5245-RHD-XX-XX-RP-X-0001 Status: S0/P01.02

Date: 5 February 2024

HASKONINGDHV UK LTD.

Telecom House 125-135 Preston Road Brighton BN1 6AF United Kingdom Water & Maritime

+44 (0)1444 458551 **T**

info@uk.rhdhv.com E

royalhaskoningdhv.com W

Document title: PC5245 Test Valley Water Cycle Study

Subtitle: Reference: PC5245-RHD-XX-XX-RP-X-0001 Your reference Status: S0/P01.02 Date: 5 February 2024 Project name: Test Valley WCS Project number: PC5245

Classification

Project related

Unless otherwise agreed with the Client, no part of this document may be reproduced or made public or used for any purpose other than that for which the document was produced. HaskoningDHV UK Ltd. accepts no responsibility or liability whatsoever for this document other than towards the Client.

Please note: this document contains personal data of employees of HaskoningDHV UK Ltd.. Before publication or any other way of disclosing, this report needs to be anonymized, unless anonymisation of this document is prohibited by legislation.

ii

Table of Contents

1	Introduction	1
1.1	A New Local Plan for Test Valley	1
1.2	Overview of Area	1
1.2.1	Water Supply and Treatment	1
1.2.2	The River Test Catchment	2
1.2.3	Nutrient Neutrality in the Solent	2
1.3	The Water Cycle Study	3
1.3.1	Objectives	3
1.3.2 1.3.3	Overarching Drivers Sources of Data	4 4
1.3.4	Data Quality and Assumptions	4 5
1.3.5	Structure of this Report	5
0	Development in the Test Valley Ostehment	•
2	Development in the Test Valley Catchment	6
2.1	Estimated Growth	6
2.1.1	Site Allocations for Development	6
3	Legislative and Policy Framework	9
3.1	Planning and the Water Framework Directive (WFD)	9
3.1.1	The Water Environment (Water Framework Directive) (England and Wales) Regulations 2017	9
3.1.2	Assessments of Developments	9
3.2	National Planning Policy Framework	10
3.3	Building Regulations and Optional Technical Standards	10
4	Water Resources and Supply	12
4.1	Introduction	12
4.1.1	Catchment Abstraction Management Strategy (CAMS)	12
4.1.1 4.1.2	Catchment Abstraction Management Strategy (CAMS) Test and Itchen Abstraction Licencing Strategy	12 12
4.1.2 4.1.2.1 4.1.2.2	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability	12 13 16
4.1.2 4.1.2.1 4.1.2.2 4.1.3	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management	12 13 16 18
4.1.2 4.1.2.1 4.1.2.2	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability	12 13 16
4.1.2 4.1.2.1 4.1.2.2 4.1.3	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water	12 13 16 18
4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3.1	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water Groundwater	12 13 16 18 18
 4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3.1 4.1.3.2 	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water Groundwater Status of Groundwater Bodies	12 13 16 18 18 20
4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3.1 4.1.3.2 4.2	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water Groundwater Status of Groundwater Bodies Water Stress Classification for England and Wales	12 13 16 18 18 20 20
4.1.2 4.1.2.1 4.1.2.2 4.1.3 4.1.3.1 4.1.3.2 4.2 4.3	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water Groundwater Status of Groundwater Bodies Water Stress Classification for England and Wales Water Resources Management Plan (WRMP)	12 13 16 18 18 20 20 21
4.1.2 4.1.2.1 4.1.3 4.1.3.1 4.1.3.2 4.2 4.3 4.4	Test and Itchen Abstraction Licencing Strategy Surface water resource availability Groundwater resource availability Abstraction Management Surface Water Groundwater Status of Groundwater Bodies Water Stress Classification for England and Wales Water Resources Management Plan (WRMP) Southern Water's Priorities for the Future	 12 13 16 18 20 20 21 22

iii

4.5.1	Baseline Supply Demand Balance	23
4.6	Proposed Strategy to Address Supply Deficit	29
4.6.1	Impact of Climate Change on Water Resources	30
5	Wastewater Collection, Treatment and Water Quality	31
5.1	Introduction	31
5.2	Wastewater Infrastructure	31
5.2.1	Sewage and Wastewater Treatment Catchments	31
5.2.1.1	Chickenhall Eastleigh Catchment	38
5.2.1.2	Fullerton Catchment	40
5.2.1.3	Romsey Catchment	41
5.2.1.4	Consultation with Southern Water	43
5.2.2	Wastewater Treatment Capacity	43
5.3	Existing Water Quality	44
5.3.1	Current Status of the Water Bodies	44
5.3.2	Discharge Consents	46
5.4	Impact of Development on Wastewater and Water Quality	47
5.4.1	Sewerage Network	47
5.4.2	Proposed Strategy for Wastewater Collection, Treatment and Water Quality	47
5.4.3	Water Body Status	47
5.5	RQP Modelling	48
5.5.1	Background	48
5.5.2 5.5.3	Methodology	48
5.5.3 5.5.4	Technically Achievable Limit Model Outputs	50 50
5.6	Load Standstill Calculations	50
6	Summary of WCS Outcomes	53
6.1	Summary review of Southern Water's dWRMP (compiled)	53
6.2	Environment Agency CAMS – Abstraction Management Plan	54
6.3	Southern Water's Drainage and Wastewater Management Plan	54

Table of Tables

Table 2-1 Details of Allocated Sites (Source: TVBC)	6
Table 4-1 Water resource availability status categories	15
Table 4-2 Surface water Resource availability classification (Source; Environment Agency	v, 2019) 15
Table 4-3 Groundwater resource availability status categories	18
Table 4-4 Groundwater resource availability (Source; Environment Agency, 2019)	18

/

Table 4-5 Potential HOF restrictions that may be applied to abstraction licences 2	19
Table 4-6: Quantitative Status of Groundwater Bodies underlying Test Valley District (Environment Agency, 2023)	21
Table 4-7: Deployable Dry Year Annual Average (DYAA), Dry Year Critical Period (DYCP) and	l 24
Table 4-8 Andover WRZ baseline supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southe Water)	ern 24
Table 4-9 Andover WRZ baseline supply demand balance to 2050 for Dry Year Critical Period(DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)	24
Table 4-10 South Hampshire Rural WRZ baseline supply demand balance to 2050 for dry year annual average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Souther Water)	
Table 4-11 South Hampshire Rural WRZ baseline supply demand balance to 2050 for Dry Yea Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)	
Table 4-12 Southampton West WRZ baseline supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023 Southern Water)	
Table 4-13 Southampton West WRZ baseline supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)	า 26
Table 4-14 Andover WRZ Final Plan supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southe Water)	
Table 4-15 Andover WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period(DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)	od 27
Table 4-16 South Hampshire Rural WRZ Final Plan supply demand balance to 2050 for dry year annual average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Souther Water)	
Table 4-17 South Hampshire Rural WRZ Final Plan supply demand balance to 2050 for DryYear Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023,Southern Water)	28
Table 4-18 Southampton West WRZ Final Plan supply demand balance to 2050 for Dry YearCritical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, SouthernWater)	า 29
Table 4-19 Southampton West WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)	າ 29
Table 5-1 Reliable limits of conventional treatment technology for wastewater (Source; Permitte LCT Environment Agency, 2021)	ed 31
Table 5-2 RBCS Indicators of risk in sewer catchments (Source; Southern Water 2020) 3	33

35
36
37
39
41
42
a 44
45
)46
) 47
ncy 48
49
50
50
51
)

Table of Figures

Figure 1.1 The Water Cycle. (Source Environment Agency Ref 54)	4
Figure 2.1 River Test catchment showing the Test Valley Borough Council administrative boundary and proposed development sites	8
Figure 4.1 Water source availability at Q95 (low flow) for Test and Itchen ALS	14
Figure 4.2 Groundwater resource availability for Test and Itchen ALS	17
Figure 5.1: Southern Water Wastewater Treatment Works that will serve the proposed developments and the catchments they drain into	32

Appendices

Appendix A Data sources

Appendix B Water Framework Directive status and objectives of water bodies

1 Introduction

1.1 A New Local Plan for Test Valley

Test Valley Borough Council (TVBC; hereinafter referred to as "the Council") is actively engaged in responding to the needs of the growing population. The Council is committed to meet its housing and related infrastructure needs by responding and planning to ensure this growth is undertaken sustainably, and thus will allow for the delivery of sustainable communities.

The Council is in the process of preparing its next Local Plan, to replace the current adopted Local Plan (2016) which has a plan period of 2011-2029. The next Local Plan 2040 is still in an early stage of development, with an Issues and Options consultation and a Refined Issues and Options consultation having been undertaken in 2018 and 2020 respectively, and a draft Local Plan 2040 Regulation 18 Stage 1 consultation undertaken February-April 2022, which covers strategic matters. A full draft Local Plan 2040 Regulation 18 Stage 2 will follow in 2024 Q1 and will include proposed allocations to meet development needs (including for employment) and a full suite of development management policies used to determine planning applications. Following public consultation, the council are intending to finalise the draft Plan for the Regulation 19 stage. The evidence provided in this Water Cycle Study may need to be updated to inform the Regulation 19 plan.

This Water Cycle Study (WCS) provides evidence for the Local Plan on the constraints and requirements for potential growth based on the local water infrastructure, with consideration to the proposed growth targets and how they can be met without adversely affecting the water environment.

1.2 Overview of Area

1.2.1 Water Supply and Treatment

Potable water is supplied to the majority of the Borough by Southern Water, although some areas are not covered by mains water supply and some small areas are covered by other companies, including Bournemouth Water, Wessex Water and Cholderton & District Water. Wastewater is collected and treated by Southern Water, although some areas do not have connections to the mains sewerage system.

Water resources in the Borough are subject to a range of developmental, environmental and climate change pressures. The Borough contains internationally important chalk rivers such as the River Test and its tributaries (**Section 1.2.2**). These highly sensitive rivers are dependent upon groundwater inputs to maintain flows.

As part of a Section 20 Agreement in the Water Resources Management Plan 19 (WRMP), licence changes set new limits on the amount of water that Southern Water (SW) can abstract from both surface water and groundwater sources without resulting in environmental impacts. As a result of these licence changes, SW has indicated there will be a significant reduction in the amount of water that can be abstracted during severe drought conditions, and this will impact on the water company's ability to maintain supplies to customers.

Water quality is also under pressure, particularly from nutrients that can be derived from discharges from wastewater treatment works (WwTWs). This is a particular issue for watercourses that drain into the Solent, which is under considerable pressure because of the supply of nitrates from the river catchments that drain into it (Section 1.2.3).

1.2.2 The River Test Catchment

The majority of the Test Valley Borough is in the catchment of the River Test, and major tributaries such as the Rivers Dever, Anton, Dun and Blackwater. The River Test rises at Ashe near Basingstoke and flows southwards to its estuary at Southampton Water. The south eastern corner of the Borough falls within the Monks Brook catchment, a smaller watercourse that drains into the River Itchen at Swaything, upstream of its confluence with Southampton Water. The River Test is a chalk river designated a Site of Special Scientific Interest (SSSI), with 65 areas designated as SSSIs within its catchment and recognised because of the ecological importance of their geological features. The UK is estimated to have 85% of chalk rivers found globally, situated in southern and eastern England. Therefore, the River Test and its tributaries are of national and international importance. The area is predominantly rural with both chalk rivers supporting a rich diversity of flora and fauna. The geology in the north of the catchment is dominated by chalk, where the rivers and aquifers afford high quality water for abstraction. In contrast, the geology in the southern catchment is mostly clay and as such the water bodies demonstrate quite different characteristics.

The landscape of the River Test catchment falls into two principal categories: narrow valleys with steeper sides that contain the tributaries (known as bournes, or if ephemeral, winterbournes) of the main river system, and the wider flat valleys of the main river system that are predominantly under pasture and have characteristic tree species running alongside individual watercourses and areas of meadow grassland, marshlands and other wetland habitats.

Natural England and the Environment Agency have set standards that need to be achieved for environmental quality that support conservation objectives for the River Test SSSI. In 2019, the Environment Agency designated the River Test Chalk groundwater body overall status as "poor" under the Water Environment (Water Framework Directive) (England and Wales) Regulations 2017, primarily due to chemical elements failure in the water quality. Many of the river water bodies supported by this groundwater are also failing to achieve their targets, with pressures on fish and macrophyte populations. The pressures on the natural chalk river systems are immense, and the River Test catchment falls into a nitrate vulnerable zone and the conservation objectives are there to protect the aquifers for abstraction of drinking water.

As part of the Environment Agency water stressed areas classification (2021), Southern Water's supply area for the River Test Valley is concluded to be in an area of 'serious water stress'. As a result, Southern Water is currently developing a scheme to transfer recycled water from Havant into the Hampshire water supply zone, allowing it to reduce abstraction from the chalk aquifer and connected chalk rivers.

1.2.3 Nutrient Neutrality in the Solent

A joint legal case was brought to the Court of Justice of the European Union (CJEU) regarding authorisations for schemes with respect to agricultural activities on sites protected by the *Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and species* ('The Habitats Directive') and where nitrogen deposition levels already exceeded the critical load.

In response, the CJEU which ruled that where a European important site, i.e., Special Areas of Conservation (SACs) and/ or Special Protection Areas (SPAs), is failing to achieve condition due to pollution, the potential for a new development to add to the nutrient load is "*necessarily limited*". Similarly, internationally important wetland sites which are designated as Ramsar sites are also included in the judgement, as under national policy they are afforded the same protection as SACs and SPAs. The Dutch-N has informed the way in which Regulation 63 of the Habitats Regulations 2017 should apply to pollution related incidents.

The Dutch-N ruling has resulted in greater scrutiny of proposed developments that are likely to increase nutrient loads to internationally important sites where a reason for unfavourable condition is an excess of a specific pollutant. The Dutch-N case applies to National Site Network sites which are already in an unfavourable condition due to high nutrient levels in combination with the importance of the designation. The following developments which are impacted include new residential units, student accommodation, care

homes, tourist attractions including campsites, glamping pods, and holiday lets, commercial developments where overnight accommodation is provided, agricultural development including additional barns, slurry stores, and Anaerobic Digesters.

In March 2022 Natural England published updated guidance on water quality and nutrient neutrality (NN) advice (NE785) which identified a further twenty protected sites that are adversely affected by nutrient pollution. Designated sites within the Solent (principally the Solent Maritime SAC and the Solent and Southampton Water SPA) were identified being in an unfavourable condition due to high loads of nitrogen. As a result, in order to comply with the Habitats Regulations, Test Valley Borough Council is not able to grant planning permission for new residential development or for developments that provide overnight accommodation that result in increased nutrient loads within the catchment of the Solent unless it can be clearly demonstrated that they will be nutrient neutral and therefore will not have a detrimental impact in terms of nitrogen loading to the designated protected areas. The two main sources of harmful nutrients and related chemicals are from agriculture (e.g., manures, fish farms, slurry and soil entering the rivers) and discharges from sewage treatment works.

1.3 The Water Cycle Study

1.3.1 Objectives

A WCS is a voluntary study that helps organisations work together to plan for sustainable growth. It uses water and planning evidence to understand environmental and infrastructure capacity. It can identify joined up and cost-effective solutions, that are resilient to climate change for the lifetime of the development. When prepared at an early stage of plan-making, water cycle studies provide evidence for plans and sustainability appraisals. They are usually led by local authorities (or groups of local authorities), since their chief aim is to provide evidence for robust plans. Other partners often include the Environment Agency, Natural England, and water companies.

Unlike a strategic flood risk assessment, a WCS is not a requirement of the National Planning Policy Framework (NPPF). However, the NPPF states that strategic policies in development plan documents should make 'sufficient provision' for infrastructure for water supply and wastewater, and planning practice guidance states that a water cycle study can help in the preparation of a plan for sustainable growth.

Water cycle studies provide evidence for plans and sustainability appraisals and are ideally completed at an early stage of plan-making. Local authorities (or groups of local authorities) usually lead water cycle studies, as the chief aim is to provide evidence for sound plans.

The WCS has been prepared to inform the site selection process in the Local Plan and aims to identify existing connections between planning and water related policies and needs in an integrated way. The main objective of the WCS is to identify any constraints on planned housing growth that may be imposed by the water cycle. The WCS then identifies how these can be resolved, i.e., by ensuring that appropriate Water Services Infrastructure (WSI) can be provided to support the proposed development. Furthermore, it provides a strategic approach to the management and use of water which ensures that the sustainability of the water environment in the area is not compromised.

The water cycle representation is presented in **Figure 1.1**, which shows how natural and man-made processes and systems interact to collect, store and/or transport water in the environment.

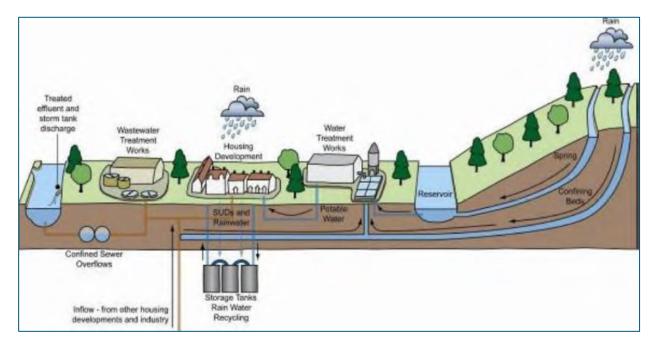


Figure 1.1 The Water Cycle. (Source Environment Agency Ref 54)

1.3.2 Overarching Drivers

There are two key overarching drivers shaping the direction of the WCS as a whole:

- Delivering sustainable water management, to ensure that provision of Water Services Infrastructure (WSI) and mitigation is sustainable, contributes to the overall delivery of sustainable growth and development and that the Local Plan meets with the requirements of the National Planning Policy Framework (NPPF) with respect to water, wastewater and water quality.
- Compliance with environmental legislation and standards, including the Water Environment (Water Framework Directive) (England and Wales) Regulations 2017 (commonly referred to as the "Water Environment Regulations") and The Conservation of Habitats and Species Regulations 2017 (commonly referred to as the "Habitats Regulations"). This legislation sets out requirements to ensure that growth requiring additional abstraction of water for supply and the discharge of treated effluent does not prevent water bodies within the Test Valley (and more widely) from achieving the standards required of them as set out in the Water Environment Regulations and specific standards for water dependent sites protected under the Habitats Regulations.

1.3.3 Sources of Data

The data used in the study has been obtained from several sources. A review of publicly available documents for the study area has been undertaken and refreshed with valuable up to date information obtained in consultation with all stakeholders involved:

- Test Valley Borough Council
- Southern Water
- Environment Agency
- Natural England

A detailed list of all data used in the study and corresponding sources is presented in **Appendix A**.

1.3.4 Data Quality and Assumptions

As with all studies of this nature, the analysis relies heavily on data and information supplied by third parties. This WCS has collated data from many parties, using the best available information at the time of preparation. Data has been checked and reviewed for accuracy wherever possible, but it is generally assumed that all data provided is accurate and up to date.

Much of this data is not static and is regularly being updated and revised as new information is collected or trends in development change. This study reflects a point in time and may need to be reconsidered at a later point when data updates or review against changes to legislation or planning guidance may be required.

1.3.5 Structure of this Report

Section 1 introduces this report and **Section 2** sets out a brief description of the proposed developments in Test Valley based on the current version of the emerging Local Plan. **Section 3** provides a concise summary of the legal and policy framework that underpins the WCS.

The specific technical information for each WCS topic is presented in **Sections 4** to **6**. **Section 4** covers Water Resources and Supply and Wastewater Collection, Treatment and Water Quality are assessed in **Section 5** The outcomes of the assessment are summarised in **Section 6**.

Reports, documents, and websites referenced by this report are listed at the end of the document, followed by supporting appendices.

Maps of the key datasets relating to all aspects of this Outline WCS are presented at a district-wide scale and provided alongside this report.

2 Development in the Test Valley Catchment

2.1 Estimated Growth

The TVBC area has experienced moderate population growth in the past decade and is expected to experience a significant increase in housing requirement and economic growth over the period to 2040. This Water Cycle Study has assessed the additional growth from proposed sites which were calculated based on the Planning Practice Guidance's Housing Need Assessment (National Planning Policy Framework), which sets out the government's standard methodology for assessing Local Housing Need (LHN).

2.1.1 Site Allocations for Development

The council are proposing potential site allocations in regulation 18 Stage 2 document for public consultation informed by current evidence. The draft Local Plan is currently considering 10 proposed sites to be evaluated for potential development. The proposed sites are shown in **Table 2-1**, and a map of the catchments showing the Test Valley Borough Council administrative boundary and proposed development sites is shown in **Table 2-1**.

In addition to proposed dwelling sites, the Council have allocated two sites for other forms of development, including employment sites. The site at Velmore Farm would include 1,070 dwellings, 5,000sqm flexible office, 250sqm co-working space, 450sqm retail, a Primary School and green space. The land at Manor Farm would include approximately 800 dwellings and an employment area with an indicative space of 5,000sqm.

The Council has proposed a site at 'Land at Upton Lane' for predominately employment uses with some limited residential (up to 80 dwellings) development in the Draft Local Plan 2040 Regulation 18 Stage 2. The scale of the residential development will be informed by the impact of noise. As such, consideration of this site is likely to be required to inform the Regulation 19 Stage.

SHELAA Ref No.	Site Name	Proposed Use	Settlement	Existing Use	Proposed Capacity
247 ¹	Land at Bere Hill Farm	Residential	Residential Andover Greenfield		600
167 and 419* ²	Land at Bere Hill and Land at Bailiffs Bottom	Residential, 12ha country park	a country		792
76, 203, 258, 404 and 441	Land South of London Road			Greenfield	90
173	Land at Manor Farm	Residential / Employment (5,000sqm, 1.5ha) (E(g)(i),	Enham Alamein/Andover	Greenfield / Agricultural	1050 ³

Table 2-1 Details of Allocated Sites (Source: TVBC)

¹ This site is adjacent to the site 'Land at Bere Hill and Land at Bailiffs Bottom

² This site is adjacent to the site 'Land at Bere Hill Farm'

³ Following an initial officer assessment of 1050 this site is being considered for allocation in the Local Plan for 800 dwellings

SHELAA Ref No.	Site Name	Proposed Use	Settlement	Existing Use	Proposed Capacity
		(ii), (iii), B8), (0.35 plot ratio).			
61	Land east of Ludgershall	Residential	Ludgershall	Greenfield	350
324	Land south of A342 and east of Shoddesden Lane	Residential	sidential Ludgershall Greenfield		1150
154	Land south of bypass	Residential	Romsey	Greenfield	110
284	Land at Ganger Farm (South)	Residential	Romsey	Greenfield	340
82, 285	Velmore Farm (and Land at Castle Lane)	Residential / Employment (offices, 5,000sqm, 1.5ha)	Valley Park	Greenfield	1070

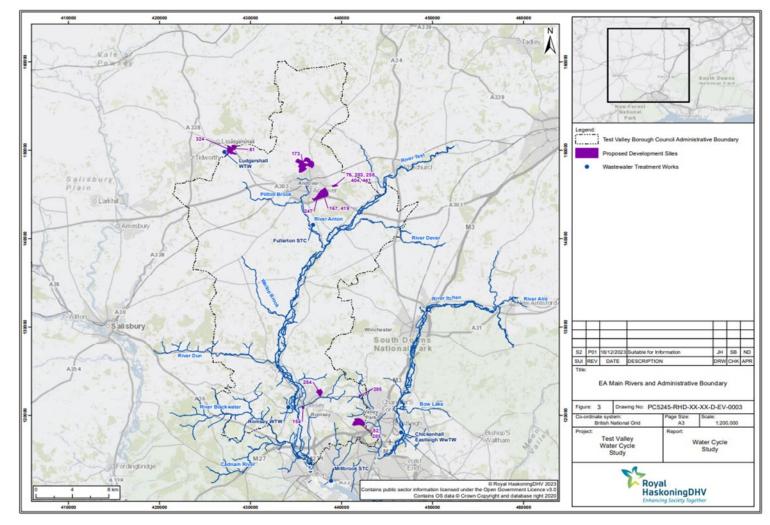


Figure 2.1 River Test catchment showing the Test Valley Borough Council administrative boundary and proposed development sites

3 Legislative and Policy Framework

3.1 **Planning and the Water Framework Directive (WFD)**

3.1.1 The Water Environment (Water Framework Directive) (England and Wales) Regulations 2017

The Water Framework Directive 2000/60/EC (WFD) was transposed into UK law through the Water Environment (WFD) (England and Wales) Regulations 2017. These remain in force following the UK's withdrawal from the European Union under the amendments presented in the Floods and Water (Amendment etc.) (EU Exit) Regulations 2019.

The Water Environment Regulations require 'good ecological status' to be achieved in all surface freshwater bodies, i.e., having biological, chemical, and structural characteristics similar to those expected in nearly undisturbed conditions. Development proposals affecting the water environment may impact the biological, hydro morphological, physio-chemical and/or chemical quality elements. Impacts leading either to deterioration in the status of a water body or to the water body being unable to achieve its status objectives are unlikely to be permitted.

Current levels of water abstraction are causing or are at risk of causing environmental damage in various river catchments across Hampshire. Measures have been identified in the South East River Basin Management Plan (RBMP) to address this and have been allocated to the water companies for delivery through the Water Industry National Environment Programme for the period 2020-25.

3.1.2 Assessments of Developments

The duty to ensure that the requirements of the Water Environment Regulations are met by developers lies with the Environment Agency. Early engagement with the local planning authority, the Environment Agency and relevant water and sewerage companies can help to establish if water quality is likely to be a significant planning concern and, if it is, to clarify what assessment will be needed to support the application.

During the planning process a screening of the development is carried out, based on three issues, in this order of importance:

- Causing deterioration: Does the development have the potential to cause deterioration in the WFD status of a water body? What is the expected impact of additional loads of treated sewage effluent?
- Preventing improvements: Does the development prevent future improvement to the water body and therefore prevent it from reaching good ecological status/potential?
- Protecting and enhancing: Are there opportunities for development to assist with protecting and improving the ecological status of water bodies and meeting WFD objectives.

Where water quality has the potential to be a significant planning concern an applicant should be able to explain how the proposed development would affect a relevant water body in a river basin management plan and how they propose to mitigate the impacts. Applicants should provide sufficient information for the local planning authority to be able to identify the likely impacts on water quality. The information supplied should be proportionate to the nature and scale of development proposed and the level of concern about water quality.

In those cases where it is likely that a proposal would have a significant adverse impact on water quality then a more detailed assessment will be required, alongside liaison with the water company. The water company will assess whether there is sufficient capacity within the existing infrastructure to accommodate foul flows from the site and within the sewerage catchment. If there is insufficient capacity to accommodate foul flows, then a detailed site wide Foul Water Drainage Strategy shall be submitted to and agreed in writing by the local planning authority. The strategy should include the phasing of such works.

The assessment and drainage strategy should form part of the environmental statement if one is required because of a likely significant effect on water. Development which may require further assessment includes, but is not limited to:

- Development within 20 metres of a watercourse where changes are proposed to the channel or bank form or where the long-term management of the watercourse would be affected;
- Development requiring EIA for reasons linked to the water environment;
- Where WRC/WTW capacity is at or close to permitted DWF capacity;
- New water infrastructure; and
- Developments on contaminated land

Deterioration can be mitigated and multiple benefits for people and the environment can be achievable through good design such as SuDS, green infrastructure, and river restoration. For example, flood risk can be reduced, and biodiversity and amenity improved by designing development that includes permeable surfaces and other sustainable drainage systems, removing artificial physical modifications and recreating natural features. Water quality can be improved by protecting and enhancing green infrastructure.

Test Valley Borough Council produces annual Authority Monitoring Reports (AMR) which provide a review of performance in the delivery of the Local Plan policies. The latest AMR covers the period 1st April 2022 to 31st March 2023.

3.2 National Planning Policy Framework

A WCS is not a requirement of the NPPF. However, the NPPF states that strategic policies in development plan documents should make 'sufficient provision' for infrastructure for water supply and wastewater, and planning practice guidance states that a water cycle study can help in the preparation of a plan for sustainable growth.

3.3 Building Regulations and Optional Technical Standards

In 2013-2014 the Government undertook a significant amendment to the existing Building Regulations, carrying out a Housing Standards Review followed by a Ministerial Statement on Building Regulations and related notes in March 2014. The initiative aimed to simplify government regulations and multiple local standards into one key set of 'tiered' standards in relation to Access, Security, Water, Energy and Space. Significantly, the Ministerial Statement proposed to introduce a new, tighter (Housing) Optional Technical Standard for water efficiency to be set at 110 litres/person/day (I/p/d) to replace the existing water consumption target of 125 I/p/d.

The NPPF enables LPAs to set out optional water efficiency requirements in a Local Plan, with the aim of improving efficiency standards for new development where it can be demonstrated there is a clear need. Given the location of the Test Valley in an area of water stress, the draft Local Plan by Test Valley has proposed a more stringent water efficiency requirement of 100 l/p/d.

In addition, the Water Act 2003 (s.83) states that "in exercising its function and conducting its affairs, each public authority shall take into account, where relevant, the desirability of conserving water supplied or to be supplied to premises."

An investigation by the Environment Agency and the Energy Saving Trust found that as sustainable building standards are tightened in new homes, CO₂ emissions from hot water use are likely to form a progressively larger component of overall household emissions and may eventually exceed emissions from heating the home. It also found that more efficient water use could contribute to lower CO₂ emissions.

4 Water Resources and Supply

4.1 Introduction

The Test Valley Catchment is located primarily within Southern Water's Resource Zones for both the northern and southern catchments of the river. The area was classified in 2021 by the Environment Agency as being under "serious water availability stress" in their 'Water stressed areas final classification 2021' document (Water stressed areas policy, Environment Agency 2021). Southern Water is responsible for the supply of potable water and treatment of waste/sewage for the entire Test Valley Catchment. For the purposes of this WCS, five of the relevant WwTW within the catchments are being included as indicated in Figure 4.1.

For the northern Test Valley catchment, 100% of Southern Water's water resource comes from groundwater sources and falls within the SW Hants Andover, Hants Winchester, and Hants Rural zones. For the southern catchment, 52% of the water is abstracted from the river and 48% is from groundwater sources in Southampton East, and 100% of the water is abstracted from the river in Southampton West water resource zone.

The company has predicted that "competing priorities" and increased risk of drought would put a strain on the network in its draft Water Resources Management Plan 2024. Long-term forecasts for population increase were "being realised" and visitor numbers were also expected to rise, further increasing water demand.

4.1.1 Catchment Abstraction Management Strategy (CAMS)

A Catchment Abstraction Management Strategy (CAMS) sets out how the Environment Agency will manage water abstraction in each catchment. CAMS documents describe where water is available for abstraction, the implications that water resource availability has for new and existing water abstraction licences, and contributes to the Water Framework Directive (WFD) by:

- Providing a water resource assessment of rivers, lakes, reservoirs, estuaries, and groundwater;
- Identifying water bodies that fail the flow conditions expected to support good ecological status;
- Preventing deterioration of water body status due to new abstractions; and
- Providing results which inform River Basin Management Plans (RBMPs).

4.1.2 Test and Itchen Abstraction Licencing Strategy

The study area falls within the Test and Itchen catchment licensing strategy (Environment Agency, 2019). The Test and Itchen catchments together cover an area of almost 1675 square kilometres within Hampshire and a significant part of both catchments is underlain by chalk. The characteristic flow regimes and drainage patterns give rise to several seasonal winterbournes which dry up for periods along some stretches. The water company abstracts significant volume of water for **public water supply** from **groundwater sources** in the upper and middle reaches. The rivers support agriculture including watercress farms and fish farms. The biodiversity and quality of habitats along the rivers and much of the coastal water around Southampton are nationally and internationally protected. This strategy is set within the context of the water resources, pressures faced and the assigned designations. The aim is to ensure that River Basin Management Plan objectives for water resources activities are met and deterioration within this combined catchment is avoided.

4.1.2.1 Surface water resource availability

The Environment Agency has assessment points along both rivers to monitor flow at various times. Water resource availability is calculated by four different flow rates:

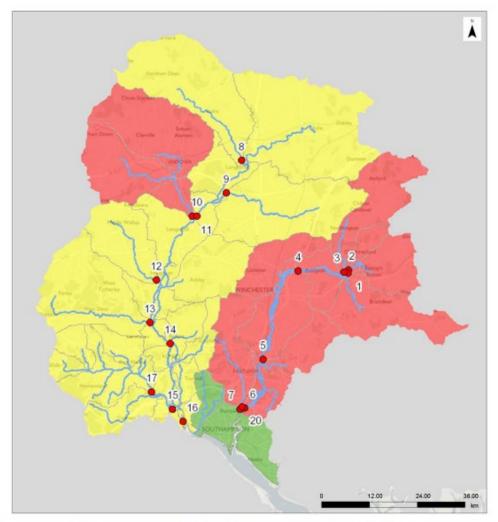

- Q95 the flows which are exceeded on average for 95% of the time i.e., low flow.
- Q70 the flows which are exceeded 70% of the time.
- Q50 the flows which are exceeded 50% of the time i.e., median flows.
- Q30 the flows which are exceeded 30% of the time i.e., higher flow.

Figure 4.1 shows water resource availability at Q95 for Test and Itchen during dry weather periods. Environment Agency assessment points (AP) numbered 8 to 17 are in the River Test catchment. The areas highlighted in red indicate severe water stress/water unavailable, e.g., the River Anton at Fullerton.

The categories of resource availability status are shown in the **Table 4-1**. The classification is based on an assessment of a river system's ecological sensitivity to abstraction-related flow reduction (Environment Agency, 2019). The classification can later be used to assess the potential for additional water resource abstractions. The classification for each of the Water Resource Management Units (WRMU) in the catchment has been summarised for surface water bodies in **Table 4-2**.

© Environment Agency copyright and/or database right 2019. All rights reserved. This map includes data supplied under licence from: © Crown Copyright and database right 2019. All rights reserved. Ordnance Survey licence number 100024198.

Legend:

•	Assessment Points
-	Rivers
Wate	r Availability at Q95:
-	

Water available

- Restricted water available
- Water not available

Table 4-1 Water resource availability status categories

Indicative resource availability status	Licence availability			
Water available for licensing	There is more water than required to meet the needs of the environment. New licences can be considered depending on local and downstream impacts.			
	Full Licensed flows fall below the Environmental Flow Indictors (EFIs).			
Restricted water available for	If all licensed water is abstracted there will not be enough water left for the needs of the environment.			
licencing	No new consumptive licences would be granted. It may also be appropriate to investigate the possibilities for reducing fully licensed risks. Water may be available if you can 'buy' (known as licence trading) the entitlement to abstract water from an existing licence holder, although it may be for reduced quantities.			
	Recent actual flows are below the EFI. This scenario highlights water bodies where flows are below the indicative flow requirement to help support Good Ecological Status (as required by the Water Framework Directive).			
No water available for licencing	No further consumptive licences will be granted. Water may be available if you can buy (known as licence trading) the amount equivalent to recently abstracted from an existing licence holder. Any water rights trading proposal in these water bodies would need to demonstrate improvements in flow.			

Table 4-2 Surface water Resource availability classification (Source; Environment Agency, 2019)

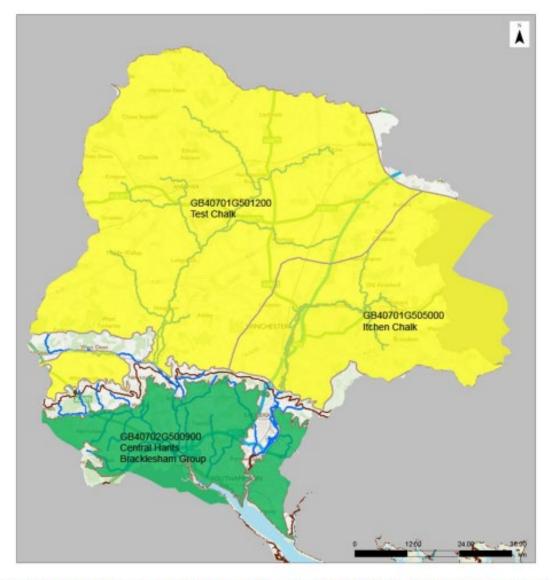
		Surface water (flow exceedance scenarios)			
River – WRMU (Number refers to the location in Figure 5.2).	CAMS Area	Q30 (Flow exceeded 30% of the time)	Q50 (Flow exceeded 50% of the time)	Q70 (Flow exceeded 70% of the time)	Q95 (Flow exceeded 95% of the time)
1 – Sewards Bridge GS					
2 – Drove Lane GS					
3 – Borough Bridge GS					
4 – Easton GS	ltchen				
5 – Allbrook & Highbridge GS	lichen				
6 – Riverside Park GS					
7 – Itchen Total					
20 – Monks Brook					
8 – Bourne GS	Test Lower and Southampton Streams				
9 – Bransbury GS					

		Surface water (flow exceedance scenarios)				
River – WRMU (Number refers to the location in Figure 5.2).	CAMS Area	Q30 (Flow exceeded 30% of the time)	Q50 (Flow exceeded 50% of the time)	Q70 (Flow exceeded 70% of the time)	Q95 (Flow exceeded 95% of the time)	
10 – Chilbolton GS						
11 – Fullerton GS						
12 – Bossington GS						
13 – Dunbridge GS						
14 – Timsbury Bridge GS						
15 – Blackwater Total	Test Upper and Middle					
16 – River Test Total						
17 – Ower GS						

4.1.2.2 Groundwater resource availability

Groundwater availability is a measure of how much groundwater is available for abstraction after the river flow requirements for ecology have been met. Groundwater availability inside the catchment area is determined by an assessment that considers:

- The recharge to that groundwater body;
- The groundwater contribution to rivers crossing that groundwater body;
- The flow needed to support ecology.


The Test and Itchen catchment comprises three groundwater bodies:

- River Test Chalk Primarily covers the upper and middle reaches of the River Test catchment and includes settlement areas such as Andover and Ludgershall.
- River Itchen Chalk Covers the upper and middle reaches of the River Itchen and includes Winchester.
- Central Hants Bracklesham Group Includes key areas such as Southampton, Eastleigh and Romsey.

Figure 4.2 shows Groundwater resource availability. The areas highlighted in yellow indicate there are restrictions on water available for licensing. The categories of resource availability status are shown in **Table 4-3**. The resource availability for each groundwater body in the catchments is shown in **Table 4-4**.

Figure 4.2 Groundwater resource availability for Test and Itchen ALS

© Environment Agency copyright and/or database right 2019. All rights reserved. This map includes data supplied under licence from: © Crown Copyright and database right 2019. All rights reserved. Ordnance Survey licence number 100024198.

Legend:

Assessment Points

Rivers

Water Availability for groundwater:

Restricted water available

Table 4-3 Groundwater resource availability status categories

Indicative resource availability status	Licence availability
Water available for licensing	Groundwater unit balance shows groundwater available for licensing. New licences can be considered depending on impacts on other abstractors and on surface water.
	Groundwater unit balance shows more water is licensed than the amount available, but that recent actual abstractions are lower than the amount available OR that there are known local impacts likely to occur on dependent wetlands, groundwater levels or cause saline intrusions but with management options in place.
Restricted water available for licencing	In restricted groundwater units no new consumptive licences will be granted. It may also be appropriate to investigate the possibilities for reducing fully licensed risks. Water may be available if you can 'buy' (known as licence trading) the entitlement to abstract water from an existing licence holder.
	In other units there may be restrictions in some areas, for example in relation to saline intrusion.
No water available for licencing	Groundwater unit balance shows more water has been abstracted based on recent amounts than the amount available. Further licences will not be granted.

Table 4-4 Groundwater resource availability (Source; Environment Agency, 2019)

Groundwater body	Groundwater body ID	Ground water (resource availability)
River Test Chalk	GB40701G501200	
River Itchen Chalk	GB40701G505000	
Central Hants Bracklesham Group	GB40702G500900	

4.1.3 Abstraction Management

4.1.3.1 Surface Water

The River Test catchment and its tributaries are constrained by hands off flow (HOF) restriction for water availability by AP16 which is the most downstream point. To protect flows in the riverine and coastal protected sites, abstraction is only considered when flows are sufficiently high across the catchment. These conditions specify that if the flow in the river drops below what is needed for environmental protection, abstraction must reduce or stop.

Table 4-5 gives an indication of how much water is available for further abstraction and the associated restrictions that may apply to new and varied abstraction licences from the main river.

Table 4-5 Potential HOF restrictions that may be applied to abstraction licences

Assessment Point (AP) River Test River Test	Name	Water Resource Availability	HOF Restriction (MI/d)	Number of days per annum abstraction may be available	Approx volume available at restriction (MI/d)	Additional restrictions
8	Bourne GS	Restricted water available for licensing	29	266	7.5	HOF@AP16
9	Bransbury GS	Restricted water available for licensing	56	266	18	HOF@AP16
10	Chilbolton GS	Restricted water available for licensing	344	266	23	HOF@AP16
11	Fullerton GS	Restricted water available for licensing	9	208	6	To protect flows in lower River Test
12	Bossington GS	Restricted water available for licensing	15	266	7	HOF@AP16
13	Dunbridge GS	Restricted water available for licensing	47	266	12	HOF@AP16
14	Timsbury Bridge GS	Restricted water available for licensing	621	266	23	HOF@AP16
15	Blackwater Total	Restricted water available for licensing	70	266	18.5	HOF@AP16
16	River Test Total	Restricted water available for licensing	647	266	23	To protect flows in River Test SSSI and Solent Maritime SAC
17	Ower GS	Restricted water available for licensing	20	266	7.5	HOF@AP16

The flows in the River Anton (10 on map) catchment are impacted by a major water abstraction by the Southern Water treatment works that supplies potable water to Andover, and a Wastewater Treatment Works discharge at Fullerton. These influences serve to deplete the River Anton. The Environment Agency is investigating the impact of abstraction and licence changes were being implemented.

The Environment Agency state that they will not grant further abstraction licences in those areas the groundwater unit balance shows more water has been abstracted based on the amount available, thus restricting the supply of potable water for human consumption.

In addition, there are abstraction constraints in the River Anton and Pillhill Brook catchments at moderate flows.

The constraints at relevant assessment points limit the opportunity for abstraction which means that no new unconstrained licences will be granted within the Test catchment.

4.1.3.2 Groundwater

Groundwater abstractions can directly impact on surface water flows and reduce river base flow levels. The impact of reduced flows is measured at the surface water assessment point. In such conditions, restrictions may be applied to abstraction licences included Hands off Level (HOL) conditions. The HOL is the groundwater level below which the abstraction of water is to be reduced or stopped to protect the environment.

- River Test Chalk: Restricted water available. Analysis indicates that there is very little scope for further abstraction that would not cause additional impacts on sensitive water features. Therefore, the Environment Agency state "there is a presumption against new consumptive groundwater abstractions from the Chalk".
- Central Hants Bracklesham Group: Water available for licensing. New abstraction licences can be considered depending on impacts on surface water and other abstractors. The Environment Agency will decide on a case-by-case basis.

4.2 Status of Groundwater Bodies

The Test Valley Borough is underlain by four groundwater bodies, as defined in the South East River Basin Management Plan (Environment Agency, 2022) and set out on the Catchment Data Explorer (Environment Agency, 2023). The quantitative status of each water body is summarised in **Table 4-6**.

The River Test Chalk, Central Hants Lambeth Group and Central Hants Bracklesham Group water bodies are all at good quantitative status. This demonstrates that abstraction does not currently result in pressures on the quantity of groundwater that are sufficient to result in adverse impacts to groundwater dependent surface waters or ecosystems, does not result in saline intrusion, and does not adversely affect the water balance at a water body scale. However, abstraction for potable water from the River Itchen Chalk results in pressures on connected surface water bodies (i.e., the River Itchen and other chalk streams that are supported by the underlying Chalk aquifer).

Water Body	Quantitative Status (overall)	Dependent Surface Water Body Status	Groundwater Dependent Terrestrial Ecosystems	Saline Intrusion	Water Balance
River Test Chalk (GB40701G501200)	Good	Good	Good	Good	Good
River Itchen Chalk (GB40701G505000)	Poor	Poor	Good	Good	Good
Central Hants Lambeth Group (GB40702G503800)	Good	Good	Good	Good	Good
Central Hants Bracklesham Group (GB40702G500900)	Good	Good	Good	Good	Good

Table 4-6: Quantitative Status of Groundwater Bodies underlying Test Valley District (Environment Agency, 2023)

4.3 Water Stress Classification for England and Wales

The Environment Agency and Natural Resources Wales have reviewed the current and future water usage and climate change scenarios, to provide an indicative water stress classification for areas in England and Wales. Water stress is defined as:

"Water stress in a region is when the demand for potable water exceeds the amount of water available for supply during a certain period. This can be caused by factors such as a lack of effective rainfall, over exploitation of aquifers and surface water sources, resulting in deterioration of fresh water resources in terms of quantity and quality because of organic matter pollution, eutrophication or saline intrusion (European Environment Agency 2023)."

High population density and high levels of demand increase the pressure on available supplies, as well as environmental factors such as local water resource availability.

Two assessments of water stress are undertaken. The first relates to the water companies' stress, in which the following criteria were used to determine the relative level of water stress for water company areas:

- Current per capita demand for water¹;
- Forecast growth in per capita demand for water;
- Forecast population growth;
- Current water resource availability; and
- Forecast resource availability.

The Environment Agency states in the final classification 2021 on water stressed areas:

"Water stress applies both to the natural environment and to public water supplies. Both will be affected by climate change. Public water supplies are under pressure from reductions in abstraction to make them more environmentally sustainable. There is also a need to make public water supplies more resilient to droughts and meet additional demands associated with development and population growth".

The water stress methodology provides an indication of relative water stress in individual water company areas by assessing the degree to which the resources in each water body within the area are exploited.

There have been two classifications on water stress for each supply area carried out by the Environment Agency. The first is water stress for 'metering' (consumer water meters) and the second is 'water body' stress which are both classed as high as discussed below. see Annex 1 of 'Environment Agency Water stressed areas - final classification 2021'.

Water companies are required to better manage the volume of water they supply, due to fresh water supplies coming under increasing pressure, especially in water stressed areas and due to higher demand in peak season, i.e., summer/drought. To manage this, water companies need to measure the volume of potable water supplied to each property with the aim to reduce the volume of water used and accurately inform on usage per person per day. Water meters installed in new property developments and retrofitted in older properties allow accurate data to be used.

The water bodies within the Test Valley are classed as being under **serious water stress**, indicating that the level of stress placed on the water environment using water through abstraction, discharge and management of storage is significantly high. The population change, and development proposed in the Local Plan would have an impact on the level of water stress for both the water company and the water bodies.

4.4 Water Resources Management Plan (WRMP)

Water companies are obliged to produce water resources management plans (WRMPs) every 5 years, with the current draft plans, published in 2023, setting out how the companies will maintain customer supplies over the period 2020-2045. The regulatory assessments show which companies have been identified as having sufficient supplies, within present legislation, to meet growth. They also show any strategic schemes that are needed to achieve this, along with reducing demands and leakage.

Southern Water's draft WRMP (dWRMP) 2024 shows how the company plans to maintain the balance between water supplies and demand. It also provides robust justification for securing a tighter water efficiency standard and shows the water company's plans to meet the longer-term challenge of population increase, climate change and growing environmental need.

The dWRMP is the result of a comprehensive water resource planning exercise and consultation with stakeholders. Established cost-benefit and cost-effectiveness methods have been applied to assess supplydemand needs and the uncertainties regarding the future have been covered using target headroom allowances. The process allows identification of priority actions to optimise economic and water resources.

4.4.1 Southern Water's Priorities for the Future

In the dWRMP, SW's pledge to put in place an overall strategic approach and vision for the next 25 years. This will form an essential basis to create sustainable plans for the future of the region with the challenge of meeting increasing demand and adapt to climate change while protecting the environment. The company plans to champion the following issues:

- Efficient water uses with minimal wastage working with stakeholders to encourage home improvement grants to allow the installation of rainwater harvesting and grey water collection equipment. This should reduce the need for potable water to wash driveways and water gardens etc. To cut leaks by at least 50% by 2050.
- **Nurturing the environment** catchment level commitment to increase restoration and naturebased solutions to improve the environment. Address abstraction constraints at sensitive locations to protect river levels and the wildlife that depends on water habitats.

- New water sources to provide resilient and sustainable supplies commitment to provide water for all needs. To develop a diverse mix of water resource solutions including:
 - o Desalination;
 - Building in greater capacity to the network by building more reservoirs and facilitating transfers of water to where it is most needed;
 - o Better interconnection facilitating greater transfers of water; and
 - Water recycling.
- A resilient infrastructure a network to meet the challenge of climate change boosted by the decarbonisation of operations and investments.
- Working with household and business customers and stakeholders commitment to encourage thriving communities by ensuring affordable bills. Seeking active community participation to help understand and address their needs. Working with local partners to deliver shared objects for people and the environment.

4.4.2 Existing Situation

Based on Southern Water's draft Water Resources Management Plan (dWRMP 2024), the existing water resources and associated supply infrastructure in the Test Valley water resources zones will be unable to accommodate the anticipated increase in demand and supply needed for any of the proposed sites without adequate water demand management, improved water treatment works infrastructure, transfers between adjacent Resource Zones and more stringent water quality permits.

4.5 Impact of Development on Water Resources

4.5.1 Baseline Supply Demand Balance

Test Valley's adopted Local Plan (2016) is ambitious and the Council plans to build a minimum of 5,292 new homes with a 40% provision for affordable housing delivery where possible between 2020 and 2029. As per the Draft Local Plan 2040, the borough requires 11,000 homes between 2020 and 2040, averaging approximately 550 homes annually. Adequate water resources for households and non-household customers will have to be factored in for the additional homes and infrastructure needed to be living and working within the region.

The increase in population will require more land to be cultivated for crops, for livestock and irrigation needs. There are growing concerns and expectations of customers and the regulators that the landscape will be preserved, and any future work carried out will not be detrimental, but beneficial to nature. This means more stringent targets will need to be met to minimise the effect of human development on the environment.

There are targets imposed by the government for its 25-year plan to 2050 which require the environment to be improved for future generations within a generation. This means water companies are to reduce leakage by half and per capita consumption by a quarter. Water companies are also required to have plans in place to reduce abstractions from rivers going forward to meet Government's objectives. During periods of water stress and drought, this plan is to facilitate resilience and security of supply.

Deployable output changes:

- Andover reduction in Peak Deployable Output (PDO) of -1.48 Ml/d (mega litres per day) from 2023-24. This is to reflect a revised reliable yield due to a hydraulic constraint.
- Near Whitchurch increase in Minimum Deployable Output (MDO) and PDO of 0.79 MI/d in a 1in-200-year drought scenario from 2023-24 to reflect new infrastructure.

Table 4-7: Deployable Dry Year Annual Average (DYAA), Dry Year Critical Period (DYCP) and Annual Licensed quantity of the WRZs that cover the WwTW (Source: Southern Water)

WRZ	DYAA deployable output (MI/d)	DYCP deployable output (MI/d)	Annual licensed quantity (MI/d)
Andover (HAZ)	22.86	24.8	16.02
South Hampshire Rural (HRZ)	10.35	10.35	13.68
Southampton West (HSW)	0	0	80

Tables below correspond to the WRZ table summaries from the draft WRMP (Southern Water, 2024) for the baseline supply-demand and the preferred final plan supply-demand scenario by Southern Water.

Baseline DYAA and DYCP

Andover WRZ, that encompasses the Fullerton WwTW areas this shows a forecast surplus of 4.71Ml/d Dry Year Annual Average (DYAA) and 3.41Ml/d Dry Year Critical Period (DYCP) supply and demand balance by the end of this AMP cycle. The South Hampshire Rural WRZ, that encompasses Romsey WwTW and surrounding areas, there is a forecasted 0.6Ml/d DYAA and 1.07Ml/d DYCP supply and demand balance by the end of this AMP cycle. Both WRZs DYAA supply demand baseline balance is in deficit by AMP cycle 9 and both the WRZs DYCP are in deficit by AMP cycle 10.

Southampton West WRZ, that encompasses the Chickenhall Eastleigh WwTW, forecast a large deficit in this AMP cycle of -41.12 MI/d DYAA and -48.77MI/d DYCP. Both the DYAA and DYCP across the next 6 AMP cycles are predicted to have a deficit for Southampton West WRZ supply-demand balance.

Table 4-8 Andover WRZ baseline supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Andover	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	22.63	19.61	14.22	8.14	7.09	7.09
Net transfers into Area (MI/d)	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33
Total DYAA Water available for use: including transfers* (MI/d)	22.3	19.28	13.89	7.81	6.76	6.76
Total DYAA Distribution Input (MI/d)	16.89	16.68	16.6	16.66	16.64	16.63
Total DYAA Target Headroom (MI/d)	0.69	0.71	0.72	0.44	0.44	0.43
DYAA supply-demand balance (MI/d)	4.71	1.89	-3.43	-9.29	10.32	-10.3

* bulk imports, exports, and inter-zone transfers

Table 4-9 Andover WRZ baseline supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Andover	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)		2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYCP Water available for use: Area sources* (MI/d)	24.37	24.37	24.37	6.85	6.85	6.85
Net transfers into Area (MI/d)	-0.41	-0.41	-0.41	-0.41	-0.41	-0.41

Andover	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYCP Water available for use: including transfers* (MI/d)	23.96	23.96	23.96	6.44	6.44	6.44
Total DYCP Distribution Input (MI/d)	20.02	19.64	19.62	19.76	19.84	19.94
Total DYCP Target Headroom (MI/d)	0.69	0.69	0.69	0.49	0.49	0.46
DYCP supply-demand balance (MI/d)	3.41	3.62	3.65	-13.82	13.89	-13.97

* bulk imports, exports, and inter-zone transfers

Table 4-10 South Hampshire Rural WRZ baseline supply demand balance to 2050 for dry year annual average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

South Hampshire Rural	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	8.75	8.75	5.3	5.3	5.3	5.3
Net transfers into Area (MI/d)	0	0	0	0	0	0
Total DYAA Water available for use: including transfers* (MI/d)	8.75	8.75	5.3	5.3	5.3	5.3
Total DYAA Distribution Input (MI/d)	7.63	7.44	7.33	7.45	7.58	7.75
Total DYAA Target Headroom (MI/d)	1.12	1.31	-2.03	-2.15	-2.28	-2.45
DYAA supply-demand balance (MI/d)	0.64	0.82	-2.51	-2.53	2.65	-2.80

* bulk imports, exports, and inter-zone transfers

Table 4-11 South Hampshire Rural WRZ baseline supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

South Hampshire Rural	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	8.78	8.78	8.78	5.33	5.33	3.33
Net transfers into Area (MI/d)	0	0	0	0	0	0
Total DYAA Water available for use: including transfers* (MI/d)	8.78	8.78	8.78	5.33	5.33	3.33
Total DYAA Distribution Input (MI/d)	8.54	8.35	8.26	8.4	8.57	8.78
Total DYAA Target Headroom (MI/d)	0.36	0.37	0.36	0.27	0.27	0.24
DYAA supply-demand balance (MI/d)	1.07	0.06	0.16	-3.34	3.51	-3.69

* bulk imports, exports, and inter-zone transfers

Table 4-12 Southampton West WRZ baseline supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Southampton West	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (Ml/d)	0	-0.17	-0.17	-0.17	-0.17	-0.17
Net transfers into Area (MI/d)	0	-10	-10	-10	-10	-10
Total DYAA Water available for use: including transfers* (Ml/d)	0	-10.17	-10.17	-10.17	-10.17	-10.17
Total DYAA Distribution Input (MI/d)	34.1	34.34	34.79	35.1	35.41	35.78
Total DYAA Target Headroom (MI/d)	3.72	3.33	3.09	1.23	1.24	1.26
DYAA supply- demand balance (MI/d)	-41.12	-47.84	-48.04	-46.5	-46.82	-47.2

* bulk imports, exports, and inter-zone transfers

Table 4-13 Southampton West WRZ baseline supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Southampton West	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	0	-1.34	-1.34	-1.34	-1.34	-1.34
Net transfers into Area (Ml/d)	0	-10	-10	-10	-10	-10
Total DYAA Water available for use: including transfers* (MI/d)	0	-11.34	-11.34	-11.34	-11.34	-11.34
Total DYAA Distribution Input (MI/d)	38.8	38.96	39.63	40.08	40.56	41.12
Total DYAA Target Headroom (MI/d)	10.17	2.31	0.17	0.06	0.03	0.11
DYAA supply- demand balance (Ml/d)	-48.77	-52.6	-51.14	-51.48	-51.93	-52.97

* bulk imports, exports, and inter-zone transfers

Preferred Final Plan DYAA and DYCP

For Andover WRZ the Final Plan Option put forward by Southern Water shows a forecast surplus of 4.71Ml/d Dry Year Annual Average (DYAA) and 3.41Ml/d Dry Year Critical Period (DYCP) supply and demand

balance by the end of this AMP cycle. The South Hampshire Rural WRZ there is a forecasted 0.64Ml/d DYAA and deficit of -0.12Ml/d DYCP supply and demand balance by the end of this AMP cycle. Both WRZs DYAA supply demand balance does not go into deficit across AMP cycles 8 - 12 in this Final Plan option.

Southampton West WRZs Final Plan for DYAA and DYCP still predicts a large deficit for the end of this AMP cycle, but the forecasted final plan now predicts positive supply demand balances for AMP cycles 8-12.

Table 4-14 Andover WRZ Final Plan supply demand balance to 2050 for the baseline Dry Year Annual Average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Andover	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	22.63	21.76	16.37	10.29	9.24	9.24
Net transfers into Area (MI/d)	-0.33	-3.86	-0.33	4.14	5.07	4.93
Total DYAA Water available for use: including transfers* (MI/d)	22.35	17.9	16.04	14.43	14.27	14.17
Total DYAA Distribution Input (MI/d)	16.89	15.72	14.74	13.98	13.83	13.74
Total DYAA Target Headroom (MI/d)	0.69	0.71	0.72	0.44	0.44	0.43
DYAA supply-demand balance (MI/d)	4.71	1.46	0.58	0.0048	0.0018	0.0026

* bulk imports, exports, and inter-zone transfers

Table 4-15 Andover WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Andover	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYCP Water available for use: Area sources* (MI/d)	24.37	27.42	27.42	9.9	9.9	9.9
Net transfers into Area (MI/d)	-0.41	-0.41	-0.41	7.21	7.12	7.1
Total DYCP Water available for use: including transfers* (MI/d)	23.96	27.01	27.01	17.11	17.02	17.00
Total DYCP Distribution Input (MI/d)	19.86	18.27	16.64	15.21	15.15	15.16
Total DYCP Target Headroom (MI/d)	0.69	0.69	0.68	0.49	0.49	0.46
DYCP supply-demand balance (MI/d)	3.41	8.04	9.68	1.41	1.39	1.38

* bulk imports, exports, and inter-zone transfers

Table 4-16 South Hampshire Rural WRZ Final Plan supply demand balance to 2050 for dry year annual average (DYAA) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

South Hampshire Rural	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (Ml/d)	8.75	10.49	11.84	11.84	11.84	11.84
Net transfers into Area (Ml/d)	0	-3.04	-0.14	-4.2	-4.2	-4.2
Total DYAA Water available	8.75	7.45	11.70	7.64	7.64	7.64

South Hampshire Rural	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
for use: including transfers* (Ml/d)						
Total DYAA Distribution Input (MI/d)	7.63	6.96	6.42	6.17	6.23	6.36
Total DYAA Target Headroom (Ml/d)	1.12	0.49	5.28	1.47	1.44	1.27
DYAA supply- demand balance (MI/d)	0.64	0	4.81	1.1	-1.04	0.92

* bulk imports, exports, and inter-zone transfers

Table 4-17 South Hampshire Rural WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

South Hampshire Rural	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (MI/d)	8.78	10.9	15.7	12.25	12.25	12.25
Net transfers into Area (MI/d)	0	-2.17	-1.1	-0.21	-4.2	-4.2
Total DYAA Water available for use: including transfers* (MI/d)	8.78	8.19	14.6	12.04	8.05	8.05
Total DYAA Distribution Input (MI/d)	8.54	7.82	7.26	6.97	7.08	7.25
Total DYAA Target Headroom (MI/d)	0.36	0.37	0.36	0.27	0.27	0.24
DYAA supply- demand balance (MI/d)	-0.12	0	6.99	4.8	0.71	0.56

* bulk imports, exports, and inter-zone transfers

Table 4-18 Southampton West WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Southampton West	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYCP Water available for use: Area sources* (Ml/d)	-2.97	82.79	82.79	82.79	8.29	8.29
Net transfers into Area (MI/d)	0	-46.5	-48.01	-51.33	23.14	23.42
Total DYCP Water available for use: including transfers* (MI/d)	-2.97	36.29	34.78	31.47	31.44	31.71
Total DYCP Distribution Input (MI/d)	34.44	33.06	31.66	30.17	30.13	30.37
Total DYCP Target Headroom (MI/d)	3.82	3.33	3.09	1.23	1.24	1.26
DYCP supply-demand balance (MI/d)	-37.29	0.01	0.04	0.06	0.07	0.06

* bulk imports, exports, and inter-zone transfers

Table 4-19 Southampton West WRZ Final Plan supply demand balance to 2050 for Dry Year Critical Period (DYCP) conditions (deficits highlighted in red) (Source: dWRMP 2023, Southern Water)

Southampton West	2024-25 (end of AMP7)	2029-30 (end of AMP8)	2034-35 (end of AMP9)	2039-40 (end of AMP10)	2044-45 (end of AMP11)	2049-50 (end of AMP12)
Total DYAA Water available for use: Area sources* (Ml/d)	0	83.4	83.4	83.4	8.9	8.9
Net transfers into Area (MI/d)	0	-43.71	-26.3	-37.89	25.65	26.16
Total DYAA Water available for use: including transfers* (MI/d)	0	39.7	56.68	45.51	34.55	35.07
Total DYAA Distribution Input (MI/d)	38.6	37.38	36.02	34.36	34.47	34.9
Total DYAA Target Headroom (MI/d)	10.17	2.31	0.17	0.06	0.03	0.11
DYAA supply-demand balance (Ml/d)	-48.77	0.01	20.49	11.1	0.06	0.06

* bulk imports, exports, and inter-zone transfers

4.6 Proposed Strategy to Address Supply Deficit

Southern Water's dWRMP sets out a strategy for water resources which redresses the water supply deficit and allows sufficient additional capacity (referred to as 'headroom') for uncertainties in development and capacity. In the previous WRMP 2019, as part of the RAPID Gate 2 process, the final plan to resolve predicted deficits involved implementing a long-term and large-scale water resource solution. The preferred strategy from WRMP19 identified a 75MI/d desalination plant on the West Southampton Coast as the main strategic resource option (SRO). During the progression of RAPID Gate 2, various environmental, planning, and socio-economic factors were considered, and a Future Needs Assessment was conducted. Through this process, and written into the current dWRMP, the West Southampton Coast desalination scheme was replaced with the Havant Thicket Winter Storage Reservoir Project (HTWSRP). This project was considered better value for customers and suited for meeting long-term regional supply requirements. Additionally, the plan included an agreement with Portsmouth Water Company (PWC) to develop and govern the development and operation of Havant Thicket Reservoir, which would bring in an additional 21MI/d.

Lowering demand level to offset development is also a priority that Southern Water aims to achieve through a use a combined strategy of:

- Preventing and fixing leaks (15% reduction by 2025; 50% by 2050).
- Promoting water efficiency by installing smart meters can reduce water consumption by 3-5% over a year. Planned meter penetration from 88% to 92%.
- Deliver SW's Target 100 campaign to reduce personal water use to 100 litres per day by promoting community water efficiency.

Target 100

The Target 100 initiative involves adopting a policy for new developments including within Test Valley to achieve a per capita consumption (PCC) water efficiency goal of 100 litres per person per day (l/p/d) by 2040. This target is more stringent than the tighter optional Building Regulations' allowance of 110 l/p/d and is supported by the local water companies, such as Southern Water. The lower target considers the region's specific needs to adapt to climate change and address water stress. Southern Water has also recommended a further reduced target of 80 l/p/d for strategic developments where master planning can yield greater water savings. Although water neutrality is not a policy for Hampshire, achieving a reduced target aligns with water neutrality concepts, that should encourage developments to offset any increase in water demand by saving water elsewhere in the community. Regional water companies and the Environment Agency have expressed support for to achieve 80 l/p/d, as it aligns with climate change resilience and efforts to achieve 'Good' status for water bodies under the Water Framework Directive.

Further water supply options for 2025 to 2030, within the relevant WRZs, that are being explored in the dWRMP are:

- Additional import from PWC (additional 9MI/d): Delivery expected 2024-2025
- Hampshire grid (reversible link HWZ-HAZ): Delivery expected 2027-2028
- Southampton link main (reversible link HSW-HSE): Delivery expected 2027-2028
- Romsey Town and Broadlands valve (HSW-HR reversible): Delivery expected 2024-2025

4.6.1 Impact of Climate Change on Water Resources

Work carried out by the UK Climate Impacts Programme (UKCIP) predicts that winter rainfall will increase whereas summer rainfall will decrease in future. In addition, increasing temperatures will reduce the length of the winter recharge season and increase water supply demand.

The impact of climate change has been analysed by Southern Water as part of their dWRMP 2024. The impact assessment confirmed that while the amount of rainfall received is more plentiful than many parts of the UK, it will becoming more concentrated and more intensive in just a few months of the year. More summers like 2022 will put pressure on resources, for example hotter, drier summers will mean more water is lost through evaporation during periods of high demand because of additional visitors to the region and the increased need for water. In extreme hot weather conditions with a lack of rainfall, the water resources in the water resource zones may suffer from depletion in not managed adequately to maintain supply. Therefore, there is the potential risk of drought measures being implemented to maintain supplies in extreme circumstances.

Working to understand what is changing and how to increase security of supply will leave the environment better than found. Two well-known options for conserving water are repairing leaks and Temporary Use Bans. Southern Water has been evaluating a blend of measures to support communities and the environment by identifying opportunities to improve how water is managed throughout the region by working with communities, co-create the dWRMP by working with all stakeholders, beneficiaries, and policy makers, aligning the plan with broader regional plans in the country, and working with nature.

5 Wastewater Collection, Treatment and Water Quality

5.1 Introduction

Southern Water is the provider for wastewater services to the parts of Test Valley District where the proposed development sites are located. These areas are served by multiple wastewater treatment works (**Figure 5.1**). WwTWs are permitted by the Environment Agency to operate within stipulated environmental guidelines such as stringent discharge water quality parameters and flow limits. Water quality monitoring requirements are set in place to prevent and minimise adverse effects such as pollution to the environment.

Through application of the best available technologies in terms of wastewater treatment, the reliable limits of conventional treatment (LCT) have been determined for the key parameters of Biochemical Oxygen Demand (BOD), ammonia and phosphate. These are provided in **Table 5-1**.

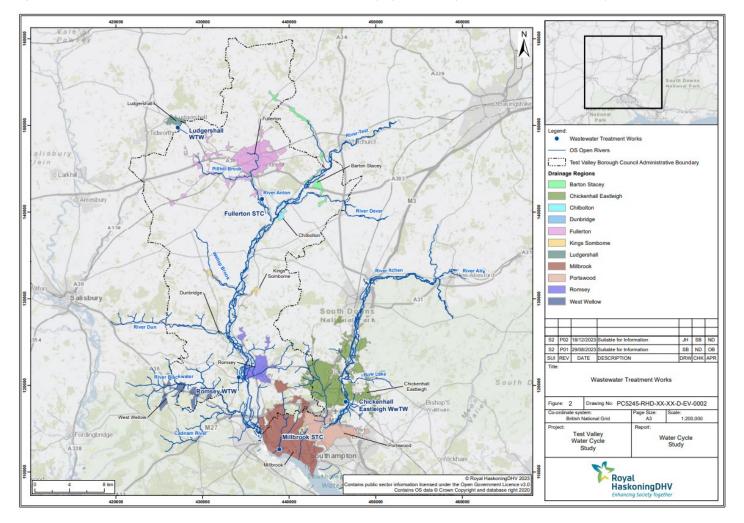
Table 5-1 Reliable limits of conventional treatment technology for wastewater (Source; Permitted LCT Environment Agency, 2021)

Water Quality Parameters	LCT
Ammonia	1.0 mg/l 95 percentile limit
BOD	5.0 mg/l 95 percentile limit
Phosphate	0.25 mg/l annual average

5.2 Wastewater Infrastructure

5.2.1 Sewage and Wastewater Treatment Catchments

Southern Water's Drainage and Wastewater Management Plan (DWMP) establishes a strategy for upgrading the region's drainage and wastewater treatment systems, marking a pathway for future infrastructure investments. The foundational step in developing the DWMP is the risk-based catchment screening (RBCS) that assesses each sewer catchment against a set of 17 indicators set out in guidance by Water UK (**Table 5-2**). The guidance categorises and measures the level of current and/or potential risk or vulnerability in the sewer catchment to future changes from developments or climate change (**Table 5-3**). This assessment is used to determine if a sewer catchment progresses onwards to the Baseline Risk and Vulnerability Assessment (BRAVA) stage of the DWMP. It is from these 17 indicators that the specific planning objectives for each catchment is derived.


The planning objectives, and options to fulfil them, are evaluated by Southern Water at each sewage and wastewater treatment catchment. The evaluation process starts with a broad set of generic options, refined through collaboration with partner organisations, and set out into unconstrained options. These are filtered down to a set of 'feasible' options after screening for financial viability and effectiveness. Only those options demonstrating clear benefits then undertake a costing analysis by Southern Water. Resulting in the selection of preferred options that provide either the 'least cost' or 'best value' to achieve the planning objectives.

Southern Water's sewage and treatment catchment areas that fall within the Test Valley Borough Council area is Chickenhall Eastleigh, Fullerton, Romsey and Ludgershall (**Figure 5.1**). The indictor vulnerability to future changes (**Table 5-4**) and POs (**Table 5-5**) for these catchments are summarised below. Notably, the Ludgershall catchment is excluded from this level of detailed evaluation, being deemed not of sufficient size to warrant such assessment. For the Ludgershall sewage treatment, Southern Water has indicated that there are no planned options or future investments planned for this catchment.

Project related

Figure 5.1: Southern Water Wastewater Treatment Works that will serve the proposed developments and the catchments they drain into

32

Table 5-2 RBCS Indicators of risk in sewer catchments (Source; Southern Water 2020)

Indicator No.	Indicator	Description	Criteria for the indicator to flag as a concern and needing further investigation in the BRAVA stage
1	Catchment characterisation	This provides a mechanism to understand the vulnerability of the sewer catchment to sewer flooding because of an extreme wet weather event (defined as a 1-in-50-year storm event).	Catchment vulnerability score = 4 or 5 (i.e. the most vulnerable or sensitive to a one in 50 year storm)
2	Intermittent discharges impact upon bathing or shellfish waters	This is a mechanism to understand the significance of any impact of water company operations on bathing or shellfish waters.	Exceeding the permitted number of spills in each bathing water season, or per annum for shellfish waters.
3	Continuous or intermittent discharges impact upon other sensitive receiving waters (Part A)	This mechanism is to understand the significance of any impact of water company operations on sensitive receiving waters not addressed by other indicators.	'Remedy' on Natural England's Designated Sites system (associated with freshwater pollution discharges or freshwater drainage).
4	Continuous or intermittent discharges impact upon other sensitive receiving waters (Part B)	A mechanism to understand the significance of any impact of water company operations on sensitive receiving waters not addressed by other indicators.	'Threat' on Natural England's Designated Sites system (associated with water pollution).
5	Storm Overflow Assessment Framework (SOAF)	This considers the current / potential future activity to identify and address high spilling storm overflows.	If spill frequency investigation triggers are likely to be crossed within next five years.
6	Capacity Assessment Framework (CAF)	The measure provides an indication of capacity constraints in the sewer network. There are accepted issues around the confidence in outputs from the Initial CAF model which does not include for surface water inputs.	When categorised as 4 or 5 (due to performance, in full or part, within the catchment) will progress to the next stage of the process.
7	Internal sewer flooding	This is a common performance commitment by water companies to reduce flooding inside customer properties. It is a historical measure that records the number of internal flooding incidents per year, and it is indicative of	The number of incidents is more than one in total over the last three years (and other specific criteria depending upon size of sewer catchment).

Indicator No.	Indicator	Description	Criteria for the indicator to flag as a concern and needing further investigation in the BRAVA stage
		capacity constraints within the sewer network.	
8	External sewer flooding	This is a common performance commitment by water companies to reduce flooding within the external curtilage of customer properties. It is a historical measure that records the number of external flooding incidents per year, and is indicative of sewer capacity constraints.	The number of incidents is more than 10 in total over the last three years (and other specific criteria depending upon size of sewer catchment).
9	Pollution incidents (categories 1, 2 and 3)	This is a historical measure that identifies incidents of unexpected release of contaminants that have resulted in environmental damage. Categorised in accordance with the 2017 definition in the Environmental Performance Assessment (EPA).	For any of the previous three years data, a category 1 or 2 pollution incident has occurred.
10	WwTW quality compliance	This is a historical measure relating to the performance of the wastewater treatment works (WwTWs).	In any of the previous three years, the WwTW discharge has been confirmed as failing and was included as such in the calculation of overall permit compliance.
11	WwTW dry weather flow compliance (DWF)	This is a historical measure of compliance with DWF permits at WwTWs.	Has the Q90 of the measured yearly flows exceeded the DWF permit condition on two consecutive years in the last five years? Or is the works at risk of exceeding its flow permit conditions?
12	Storm overflows	A measure that focuses on using available data to examine permit risks that have not been captured by other indicators (e.g., pass forward flow conditions).	Is there evidence to indicate that over the last three years any overflow is not operating in accordance with permit conditions?
13	Risks from interdependencies between Risk Management Authority (RMA) drainage systems	A mechanism to understand risk posed by interdependencies / interactions between other RMA drainage systems in the catchment.	Where it is considered that significant risks arise from interaction with other RMA drainage systems / receiving waterbodies.

Indicator No.	Indicator	Description	Criteria for the indicator to flag as a concern and needing further investigation in the BRAVA stage
14	Planned residential new development	A measure to understand the risks from forecast residential population growth in the sewer catchment.	Planned residential development is greater than thresholds set out in the guidance.
15	Water Industry National Environment Programme (WINEP)	The WINEP sets out the actions that water companies need to complete to meet their environmental obligations. Where there are specific WINEP drivers it is considered necessary that a long-term approach to managing the issues is developed.	Known WINEP drivers impacting the specific Level 3 catchment.
16	Sewer collapses	This is a historical measure that identifies risks to the integrity of the sewer system.	Sewer collapses are more than two per year in any of the preceding three years
17	Sewer blockages	This is a historical measure that records obstructions in a sewer (that require clearing) which causes a reportable problem (not caused by hydraulic overload), such as flooding or discharge to a watercourse, unusable sanitation, surcharged sewers or odour.	If the number of blockages (normalised by sewer length) in any of the preceding three years is greater than the company average.

Table 5-3 RBCS indicator categories and associated risk and vulnerability criteria (Source; Southern Water 2020)

RBCS indicator categories	Risk and Vulnerability criteria		
	No indicators are flagged. This implies that there is no current evidence to suggest that the sewer catchment is likely to be vulnerable to changes in the future.		
	If two or more indicators are flagged of this colour (excluding sewer collapses and blockages) then a BRAVA is required to identify whether and to what extent changes in future inputs impact on planning objectives.		
	If one or more indicators are flagged in this colour (again, excluding sewer collapses and blockages) then a BRAVA is required.		

Table 5-4 Indicator vulnerability and risk categories for each Sewage and Wastewater Catchments within Test Valley Borough Council District (Source, Southern Water 2020)

	Sewage and Wastewater Catchments			
Indicator No.	Chickenhall Eastleigh	Fullerton	Romsey	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				

ID	Planning Objectives	How Objective is Measured	Regulatory Driver
PO1	Internal Flooding	Risk of sewer flooding in a 1 in 50 year storm – this is a severe storm that is likely to occur once in every 50 years or, put another way, a 2% chance of happening in any 12 month period	Flood and Water Management Act 2010
PO2	Pollution Risk	Storm overflow performance – this is non-compliance of a storm overflow with the permit issued by the Environment Agency which specifies the amount, frequency and concentration allowed to be discharged into the receiving water	Environment Act, 2021
PO3	Sewer Collapse	Risk of WwTW quality compliance failure – this is non-compliance of a WwTWs with its permit	Water Industry Act, 1991
PO4	Risk of Sewer Flooding in 1 in 50 Years	Internal sewer flooding risk – which is internal flooding of a domestic or business premises by wastewater	Resilience metric (obligation under the Flood and Water Management Act 2010)
PO5	Storm Overflow Performance	Pollution risk - pollution from any wastewater source on land or in water	Environment Act, 2021
PO6	Risk of WwTW Compliance Failure	Sewer collapses risk.	The Urban Wastewater Treatment Regulations, 1994
PO7	Annualised Flood Risk/Hydraulic Overload	Annualised Flood Risk (Hydraulic Overload):. Storms are taking place with increasing frequency, different levels of severity and with many geographical variations, all of which affects where and how much rain water enters, and fills, our sewers causing them to overload and flood.	Resilience metric (obligation under the Flood and Water Management Act 2010)
PO8	DWF Compliance	WTW Compliance with the Environment Agency's permit relating to the dry weather flow (DWF) arriving at the treatment works: The national planning	The Urban Wastewater Treatment Regulations, 1994

Table 5-5 Planning Objectives for Southern Water's DWMP (Source; Southern Water 2020)

ID	Planning Objectives	How Objective is Measured	Regulatory Driver
		objective for Wastewater Treatment Works Compliance combined both Water Quality and Dry Weather Flow components.	
PO9	Achieve Good Ecological Status	Achieve Good Ecological Status or Good Ecological Potential (GES/GEP)	EU Water Environment Regulations, 2017
PO10	Improve Surface Water Management	Improve Surface Water Management	Resilience metric (obligation under the Flood and Water Management Act 2010)
PO11	Secure Nutrient Neutrality	Secure Nutrient Neutrality	Habitats Regulation, 1992
PO12	Reduce Groundwater Pollution	Reduce Groundwater Pollution	The Groundwater Regulations, 2009
PO13	Improve Bathing Water Quality	Improve Bathing Water Quality	The Bathing Waters Regulations, 2013
PO14	Improve Shellfish Water Quality	Improve Shellfish Water Quality	Water Environment Regulations 2017

It is important to note that the preferred options described by Southern Water do not translate into firm commitments or assurances regarding funding or implementation. Instead, they provide the financial scope that may be required for anticipated investments within the catchment.

5.2.1.1 Chickenhall Eastleigh Catchment

The indicator vulnerability assessment for Chickenhall Eastleigh (**Table 5-4**) demonstrates that the catchment is vulnerable to nine of the 17 indicators; 1, 4, 7, 9, 12, 13, 14, 15 and, 17. Each indicator is paired with a relevant PO that include options that can be undertaken to address each indictor at specific locations within the catchment (**Table 5-6**):

- Indicator 1 (Catchment Characterisation) aligns with PO1 in addressing the risks of severe flooding from rare extreme weather events.
- Indicator 4, although not directly linked to a PO, supports PO2's goals by monitoring water quality impacts from discharges on sensitive waters.
- Indicator 7 (Internal sewer flooding) correlates with PO4, using historical flooding data to inform flood risk prevention strategies within properties.
- Indicator 9 (Pollution incidents) ties into PO5's aim to minimize environmental pollution from the water company's operations.
- Indicator 12 (Storm overflows) also supports PO5 by ensuring compliance with regulations to prevent pollution.

- Indicator 13 (Interconnected drainage system risks) feeds into PO7's concerns with managing hydraulic overload and flood risk due to varying rainfall and system interactions.
- Indicator 14 (Residential development impact) informs PO10's strategy for managing growth-related sewage capacity issues.
- Indicator 15 (Alignment with WINEP) drives action on strategic, long-term objectives like PO8 and influences PO11 and PO12's focus on nutrient neutrality and groundwater pollution.
- Indicator 17 (Sewer blockages) is key for PO10's surface water management strategies, indicating maintenance needs and influencing stormwater management.

Location	Option	Indicative Costs	Indicative Timescales	Planning Objective ID
Hotspot 1 - Hiltingbury / Chandler's Ford	Customer Education Programme: Targeted campaign to reduce the amount of FOG (fats, oils and grease) and unflushables discharged into the sewer network	£115K	AMP8 onwards	P01
Hotspot 1 - Hiltingbury	Customer Education Programme: Targeted campaign to reduce the amount of FOG (fats, oils and grease) and unflushables discharged into the sewer network	£115K	AMP8 onwards	PO2
Botley Road Horton Heath WPS	Sewer Rehabilitation: Targeted CCTV or electroscan surveys and sewer rehabilitation to reduce the risk of sewer bursts and collapses	£930K	AMP8 onwards	PO2
Hotspot 1 - Hiltingbury / Chandler's Ford	Enhanced Sewer Maintenance: Increase targeted sewer jetting to reduce the number of blockages in the network	£35K	AMP8 onwards	PO2
Otterbourne- Inner & Outer Zone TCZ, Twyford- Inner & Outer Zone TCZ	Sewer Rehabilitation: Targeted CCTV or electroscan surveys to check the integrity of sewers and reline or renew them to reduce the risk of groundwater pollution	£2,840K	AMP9	PO12
Chickenhall Eastleigh WTW	Improve the operational resilience of wastewater treatment works (WwTW) to reduce pollution incidents	£6,970K	AMP8 onwards	PO2
Chickenhall Eastleigh WwTW	Increase capacity to allow for planned new development	£2,570K	AMP9	PO8
System Wide	Improve the Hydraulic Model: Surveys and reverification of model to improve confidence and accuracy	£300K	AMP8	PO4, PO5, PO7 PO10
Chickenhall Eastleigh SSO	Reduce the number of storm discharges from Chickenhall Eastleigh SSO by a combination of SuDS and storage options	£13,780K	AMP10	PO4, PO5, PO7

Table 5-6 Chickenhall Eastleigh preferred options (source; Southern Water)

Location	Option	Indicative Costs	Indicative Timescales	Planning Objective ID
Burnetts Lane Horton Heath CSO	Reduce the number of storm discharges from Burnetts Lane Horton Heath CSO by a combination of SuDS and storage options	£1,435K	AMP12	PO4 PO5 PO7
Templars Way Chandlers Ford CSO	New or improved screen to reduce aesthetics impacts from storm discharges at Templars Way Chandlers Ford CSO	£130K	AMP12	PO5
Valley Road Chandlers Ford CSO	New or improved screen to reduce aesthetics impacts from storm discharges at Valley Road Chandlers Ford CSO	£130K	AMP12	PO5
Park Road Chandlers Ford CSO	New or improved screen to reduce aesthetics impacts from storm discharges at Park Road Chandlers Ford CSO	£130K	AMP12	PO5
Chestnut Avenue Eastleigh CSO	New or improved screen to reduce aesthetics impacts from storm discharges at Chestnut Avenue Eastleigh CSO	£130K	AMP12	PO5
Consort Road Eastleigh CSO	Reduce the number of storm discharges from Consort Road Eastleigh CSO by a combination of SuDS an WTW	£10,079K	AMP8	PO11

5.2.1.2 Fullerton Catchment

The indicator vulnerability assessment for Fullerton (**Table 5-4**) demonstrates that the catchment is vulnerable to ten of the 17 indicators; 1, 6, 7, 9, 12, 13, 14, 15, 16 and, 17. Each indicator is paired with a relevant PO that include options that can be undertaken to address each indictor at specific locations within the catchment (**Table 5-7**):

- Indicator 1 examines the sewer catchment's vulnerability to extreme weather, contributing to flood risk preparedness strategies relevant to PO6.
- Indicator 7 focuses on the risk of flooding within customer properties, aligning with objectives in PO9 related to customer property protection and resilient service delivery.
- Indicator 6 has a broad scope that includes pollution control (PO2), ecological sustainability (PO12), regulatory compliance (PO8), flood risk and drainage system management (PO4, PO5, PO7), and infrastructure planning in response to population dynamics (PO10).
- Indicator 9 tracks pollution events and informs objectives like PO2 and PO12, aimed at mitigating pollution and enhancing the ecological performance of water services.
- Indicator 12 ensures compliance with storm overflow permits, supporting PO8's focus on regulatory adherence.
- Indicator 13 addresses the interconnectedness of drainage systems and their associated risks, feeding into integrated water management goals as contemplated in PO5.
- Indicator 14 anticipates the effects of population growth on sewer infrastructure, contributing to sustainable development goals potentially covered by PO11.
- Indicator 15 promotes actions in line with WINEP, furthering environmental obligations and possibly influencing PO9 on environmental sustainability.

- Indicator 16 gauges sewer collapse incidents, which is critical for maintaining infrastructure integrity and could be a part of PO9's scope.
- Indicator 17 looks at sewer blockages, key for maintenance and service continuity and linked to objectives related to infrastructure's resilient function, PO6 or PO9.

Table 5-7 Fullerton preferred options (source; Southern Water)

Location	Option	Indicative Costs	Indicative Timescales	Planning Objective ID
Furzedown Lane Amport WPS	Improve the operational resilience of wastewater pumping station (WPS) to reduce pollution incidents	£235K	AMP8 onwards	PO2
Andover- Inner & Outer Zone TCZ	Sewer Rehabilitation: Targeted CCTV or electroscan surveys to check the integrity of sewers and reline or renew them to reduce the risk of groundwater pollution	£5,595K	AMP9	PO12
Fullerton WwTW	Increase treatment capacity to allow for planned new development	£35,100K	AMP11	PO6
Fullerton WwTW	Increase capacity to allow for planned new development	£4,000K	AMP8	PO8
Anton Lane Andover CEO	New or improved screen to4008)	£7,167K	AMP8	PO9, PO11
Fullerton WwTW	Optimise existing process (WINEP OAR 08SO102635)	£120K	AMP8	PO9

5.2.1.3 Romsey Catchment

The indicator vulnerability assessment for Romsey (**Table 5-4**) demonstrates that the catchment is vulnerable to eight of the 17 indicators; 1, 4, 7, 12, 13, 14, 15, and, 17. Each indicator is paired with a relevant PO that include options that can be undertaken to address each indictor at specific locations within the catchment (**Table 5-8**):

- Indicators 1 and 7 both feed into PO1, focusing on managing flood risks, with Indicator 1 assessing system-wide vulnerability to weather events and Indicator 7 targeting the reduction of internal property flooding.
- Indicator 4 aligns with PO6, highlighting the need to protect water quality from wastewater discharges.
- Indicator 12 is connected to PO1 and PO7, monitoring storm overflow compliance to manage flood risks and uphold operational standards.
- Indicator 13 links to PO4, PO5, and PO7, addressing complex risks from interconnected drainage systems, with implications for integrated management and environmental protection.
- Indicator 14 is tied to PO5, looking at how population growth may strain sewer Infrastructure and calling for growth-sensitive management strategies.
- Indicator 15 relates to PO5, ensuring water company actions are aligned with environmental objectives set by WINEP.

• Indicator 17 associates with PO9 and PO11, monitoring blockages for service reliability, infrastructure resilience, and customer satisfaction.

Table 5-8 Romsey preferred options (source; Southern Water)

Location	Option	Indicative Costs	Indicative Timescales	Planning Objective ID
Central Romsey (Abbey Water, Tadburn Road, Chambers Avenue	Customer Education Programme: Targeted campaign to reduce the amount of FOG (fats, oils and grease) and unflushables discharged into the sewer network	£115K	AMP8 onwards	PO1
Hotspot 1 - Central Romsey (Abbey Water, Tadburn Road, Chambers Avenue	Enhanced Sewer Maintenance: Increase targeted sewer jetting to reduce the number of blockages in the network	£90K	AMP8 onwards	PO1
Romsey WwTW	Increase treatment capacity to allow for planned new development	£2,010K	AMP9	PO6
System Wide	Improve the Hydraulic Model: Surveys and reverification of model to improve confidence and accuracy	£300K	AMP8	PO1, PO7
Romsey SSO	Reduce the number of storm discharges from Romsey SSO by a combination of SuDS and storage options	£2,860K	AMP11	PO4, PO5, PO7
Memorial Park Romsey CEO	New or improved screen to reduce aesthetics impacts from storm discharges at Memorial Park Romsey CEO	£130K	AMP11	PO5
The hundred Romsey CSO	New or improved screen to reduce aesthetics impacts from storm discharges at The Hundred Romsey CSO	£130K	AMP12	PO5
Eight Acres Romsey CSO	Reduce the number of storm discharge to denitrification to achieve 10mg/I Total N	£5,990K	AMP8	PO9, PO11

42

Location	Option	Indicative Costs	Indicative Timescales	Planning Objective ID
	permit. (WINEP OAR 08SO104007)			
Romsey WwTW	Optimise existing process (WINEP OAR 08SO102639)	£120K	AMP8	PO9

5.2.1.4 Consultation with Southern Water

Consultation with Southern Water was undertaken in December 2023 to determine whether the company is currently planning to undertake any upgrades to the WwTWs located within Test Valley Borough. Southern Water's response is summarised below:

- Chickenhall Eastleigh WwTW: Southern Water have no plans to upgrade the site and are not planning on increasing capacity in terms of flow.
- Fullerton WwTW: There are plans for a new growth scheme for dry weather flow permit compliance, but this is still in the planning stage and no timescale has been confirmed, at present.
- Romsey WwTW: Southern Water have no plans to upgrade the site and are not planning on increasing capacity in terms of flow.
- Ludgershall WwTW: There are plans for a new growth scheme for treatment capacity which will be delivered in combination with the Total Nitrogen (TN) driver. This is still in the planning stage and no timescale has been confirmed, at present.

5.2.2 Wastewater Treatment Capacity

SW have an adaptive strategy to manage growth uncertainty. The capacity risk assessment process for WwTW is undertaken on an annual basis, to ensure investment is continually prioritised. Once potential developments and expected build rates per site are established and adopted in the Local Plan, a detailed assessment of the long-term required infrastructure upgrades regarding WwTWs can be undertaken.

The permitted and measured dry weather flows (DWF) for each WwTW are provided in **Table 5-9**, these include WwTW outside of the TVBDs area but are responsible for the discharge into main areas of growth within TVBC. The Q80, or average value exceeded by 80 percent of all daily measured flows, is the accurate DWF measure. To allow for weather variations, Q90 is the average value which is exceeded by 90 percent of all daily measured flows and is the compliance measure for the permitted DWF. The current permitted DWF is also provided in the table for each WwTW, where available. Should a site be non-compliant, investigations are undertaken to identify the cause and remedial actions where appropriate. The calculations are based on the Q80 DWF.

The sewer capacity is influenced by flow rates, root ingress, misconnections, infiltration, silt and the build-up of fats, oils, and greases. Capacity assessment levels are calculated off the percentage permitted DWF in use after factoring in the headroom against the actual DWF.

WwTW	Receiving watercourse	DWF Q80 (m ³ /d)	DWF Q90 (m ³ /d)	Permitted DWF, m ³ /day	Actual DWF ⁴ (Q80), m3/day	headroom, m ³ /day (Q80)	% of permitted DWF in use (Q80)	Capacity Assessment
Romsey	River Test (Middle)	4,538	4,284	7,379	4,538	2,841	61	>30%
Fullerton	River Test	17,270	16,742	19,291	17,270	2,021	90	<10%
Ludgershall	Ludgershall Brook and Muswellhill Brook	607	588	887	607	280	68	>25%
Chickenhall Eastleigh	Monks Brook	23,840	22,514	32,000	23,840	8,160	75	<25%

Table 5-9 Test WwTW locations and flow data (Source: Environment Agency Catchment Data Explorer, Test Valley)

5.3 Existing Water Quality

Water quality can be affected by new residential development due to point source and/or diffuse pollution:

- Point source pollution enters a water body at a specific site and is generally readily identified. Potential point sources of pollution include discharges of effluent from sewage treatment works and combined sewer outfalls, discharges from industrial sites, and leachate from landfill sites.
- Diffuse pollution cannot be attributed to a precise point or incident but is the cumulative effect of
 activities over a large area, including agriculture, construction, road runoff and domestic
 misconnections to the surface drainage network. It is often difficult to identify specific sources of
 such pollution and therefore take immediate action to prevent it.

5.3.1 Current Status of the Water Bodies

For the purposes of the Water Environment (Water Framework Directive) (England and Wales) Directions 2017, surface water bodies are classified based on both Ecological status and Chemical status (see **Appendix B** for further details of assessment criteria):

- Ecological status is an assessment of the quality of water ecosystem, and shows the influence of pressures (e.g., pollution and habitat degradation) on a range of biological, physio-chemical and hydro morphological quality elements. The overall ecological status classification for a water body is determined by the element with the worst status out of all the biological and supporting quality elements.
- Chemical status is an assessment of the chemical concentrations in the water body. Good Chemical status means that no concentrations of priority substances exceed the relevant environmental quality standards set out in the WFD. The environmental quality standards aim to protect the most sensitive species from direct toxicity, including predators and humans via secondary poisoning.

Table 5-10 provides a summary overview of the status of all river water bodies located within the Test Valley Borough Council District, according to the Environment Agency's web resource *Catchment Data Explorer* (Environment Agency, 2023). Objectives to be achieved and detailed information for each water body has been reviewed and can be found in **Appendix B**.

Table 5-10 WFD status and objectives of water bodies in Test Valley Borough (Source: Environment Agency Catchment Data Explorer)

		Ecc	ological Status	Chemical Status		
Water Body	Operational Catchment	Current Status (2022)	Objective status	Current Status (2022)	Objective status	
Bow Lake	ltchen	Bad	Good (2027), low confidence	Does not require assessment, fail in 2019	Good (2063)	
River Arle	ltchen	Moderate	Good (2015)	Does not require assessment, fail in 2019	Good (2063)	
River Itchen	ltchen	Good	Good (2015)	Does not require assessment, fail in 2019	Good (2063)	
Cadnum River	Test Lower and Southampton Streams	Poor	Good (2027), low confidence	Does not require assessment, fail in 2019	Good (2063)	
River Blackwater	Test Lower and Southampton Streams	Moderate	Good (2027), low confidence	Does not require assessment, fail in 2019	Good (2063)	
River Dun	Test Lower and Southampton Streams	Moderate	Good (2027), low confidence	Does not require assessment, fail in 2019	Good (2063)	
River Anton Lower	Test Upper and Middle	Moderate	Good (2027), low confidence	Does not require assessment, fail in 2019	Good (2063)	

		Ecc	ological Status	Chemical Status	
Water Body	Operational Catchment	Current Status (2022)	Objective status	Current Status (2022)	Objective status
River Anton Upper	Test Upper and Middle	Good	Good (2015)	Does not require assessment, fail in 2019	Good (2063)
River Dever	Test Upper and Middle	Good	Good (2015)	Does not require assessment, fail in 2019	Good (2063)
Pillhill Brook	Test Upper and Middle	Good	Good (2021)	Does not require assessment, fail in 2019	Good (2063)
River Test (upper)	Test Upper and Middle	Good	Good (2015)	Does not require assessment, fail in 2019	Good (2063)
Wallop Brook	Test Upper and Middle	Good	Good (2015)	Does not require assessment, fail in 2019	Good (2063)

5.3.2 Discharge Consents

The capacity of the receiving watercourse to dilute WwTW discharges is important for determining future impacts of development. WwTW discharge consents refer to physio-chemical elements, e.g., ammonia, Biological Oxygen Demand (BOD), or phosphates. Information on discharge consent quality requirements for the three identified key parameters to ensure 'no deterioration' occurs in the current WFD status has been provided by the Environment Agency for the WwTWs in Test Valley and is presented in **Table 5-11**. Not all WwTWs will have permitted consent limit for physio-chemical elements and may only have a singular limit for each chemical this is shown as dash in the Table below.

Phosphorou (mg/l)				ygen Demand (mg/l)	Ammonia	Consented	
WwTW	Upper Limit Tier Limit Limit	Limit	Upper Tier limit	Limit	Upper Tier limit	DWF Flow (m ³ /d)	
Romsey	2	-	25	50	8	30	7,379
Fullerton	-	-	15	20	10	10	19,291

Table 5-11 Discharge consent quality requirements for WwTW (Source: Environment Agency)

Phosphorou (mg/l)			Biological Ox (BOD)	ygen Demand (mg/l)	Ammonia	Consented	
WwTW	Limit	Upper Tier Limit	Limit	Upper Tier limit	Limit	Upper Tier limit	DWF Flow (m³/d)
Chickenhall Eastleigh	1	-	12	46	2.8	11	32,000
Ludgershall	-	-	40	80	5	20	887

5.4 Impact of Development on Wastewater and Water Quality

5.4.1 Sewerage Network

New development leads to an increase in demand for sewerage services and hence increased treated discharge flows from WwTW (that will be regarded to as Water Recycling Centres, WRCs, in future policy documents). Sewage effluent is collected and directed to the closest WwTW. Increased discharges from WwTW may have an adverse impact on flood risk that needs to be taken into consideration.

5.4.2 Proposed Strategy for Wastewater Collection, Treatment and Water Quality

An additional assessment of WwTW capacity in terms of the new development proposed in the emerging Local Plan has been made to inform this report the findings of this assessment are provided in Table 5-12, only WwTW that have predicted growth were projected using the Q80 scenario. The future DWF (m³/day) capacity is calculated using the proposed number of dwellings TVBC is planning to build within the WwTW areas. From this assessment we see that the proposed residential development will significantly reduce the wastewater network capacity at Fullerton and Ludgershall and these WwTW will likely exceed the permitting capacity limits. Therefore, mitigation measures are required so that sewer flooding risk is not increased in these areas.

WwTW	Estimated Properties	Current PE (2023)	Population Growth by	Projected DWF (m ^{3/} day)	Permitted DWF (m ^{3/} day)	Capacit y (% of m³/day permit used)	Proposed Dwellings	
Romsey	10,773	22,792	+22.0	4,583	7,379	61	450	64
Fullerton	28,438	66,520	+41.0	17,270	19,291	90	2,282	97
Ludgershall	2,521	5,835	+20.0	607	887	68	1,500	109
Chickenhall Eastleigh	41,616	98,437	+35.0	23,840	32,000	75	1,114	76

Table 5-12 Capacity within permitted DWF headroom to accept future flows based on the Q80 scenario (Sources, Southern Water)

Several studies, including this WCS, will inform the Council in the decision of the location and scale of housing and employment allocations in the Local Plan. The joint approach with all relevant stakeholders needs to ensure an adequate available wastewater treatment capacity over the assessed period.

5.4.3 Water Body Status

The receiving WFD water body has its own corresponding ecological, chemical and mitigation assessment status which is critical to factor in before any developments or plans are made that may add to the water stress. Full details on these WFD water bodies can be found in **Appendix B**.

WwTW	WFD water body
Romsey	Test – conf Dun to Tadburn Lake Water Body (GB107042016460)
Fullerton	Test – conf Dever to conf Anton Water Body (GB107042022750)
Chickenhall Eastleigh	Monks Brook Water Body (GB107042016310)
Ludgershall	Ludgershall Brook and Muswellhill Brook Water Body (GB106039030060)

Table 5-13: Associated closest WFD water body for each WwTW (Source: Environment Agency Catchment Data Explorer)

5.5 RQP Modelling

5.5.1 Background

The RQP (River Quality Planning) modelling methodology is a systematic process used to assess the water quality impact of discharge from Water Recycling Centres (WRCs) on receiving watercourses, ensuring compliance with the Water Framework Directive (WFD) targets and The Conservation of Habitats and Species Regulations (2017) (as amended).

Data is collected from various WRCs, focusing on the current and future Dry Weather Flows (DWF), concentrations of pollutants such as Biochemical Oxygen Demand (BOD), Ammonia (NH4), and Phosphate (P), as well as the projected increase in pollutant load due to proposed developments. The RQP modelling is essential for long-term planning, predicting the environmental consequences of proposed developments, and guiding the implementation of Technically Achievable Limit (TAL) to minimize ecological disruption.

5.5.2 Methodology

The RQP tool was made available by the Environment Agency and was deemed an acceptable approach for this assessment. The tool uses a Monte Carlo Mass Balance approach to calculate the permit limit values needed for each pollutant to achieve a specified river quality standard.

The following data is required to run the RQP software:

- Upstream River flow data (Source: National River Flow Archive)
 - o Mean average flow
 - 95% exceedance flow (i.e. low flow)
- Upstream river concentration data (Source: Environment Agency)
 - o Mean average concentration for each pollutant
 - Standard deviation
 - Number of samples
- Wastewater treatment works flow data (Source: Southern Water / LPA Growth projections)
 - o Mean average discharge flow
 - Standard deviation
- Wastewater treatment works concentrations data (Source: Southern Water)

- Mean discharge quality
- Standard deviation
- Number of samples

Within the RQP modelling for the relevant WwTW there were certain chemicals that did not have recorded amounts for Phosphates, BOD or Ammonia. For these circumstances 60% of the consented amount was used as the measurement and a third of that total was used as the standard deviation as per the recommendation by SEPA guidance (2016). The model's predictions were validated by comparing them with the EA's classification system and the objectives for each watercourse. Compliance or non-compliance with the WFD targets is ascertained through this comparison.

The following downstream target scenarios were modelled:

- **Maintain current mixing point quality** maintain current mixing point quality for the pollutant, after growth. This is a precautionary approach which ensures no deterioration from the current conditions.
- **Limit deterioration to 10%** limiting deterioration at the mixing point to 10% for the pollutant, after growth. This is required to minimise deterioration within WFD status class.
- Limiting status deterioration Ensuring no deterioration from the current WFD status for the pollutant. This is to ensure the WFD policy requirement that 'development must not cause a deterioration in WFD status' is met.
- **Meet future target status** WFD target status for the pollutant (where the physio-chemical status is not currently being achieved). This ensures the WFD policy requirement 'development must not prevent a waterbody from achieving its Future Target Status' is met.

The following criteria was used to scope in treatment works for the RQP modelling:

- The wastewater treatment works will exceed the permitted flow headroom capacity after growth.
- The Wastewater treatment works would be operating with less than 10% of the permitted DWF limit after growth.
- The Wastewater treatment works discharges into the Solent and Southampton Water SPA / Ramsar and Solent Maritime SAC (regardless of residual headroom capacity after growth).

Treatment works with greater than 10% headroom after growth and those that discharge into a transitional / tidal waterbody or to groundwater were scoped out of RQP modelling and selected for Load Standstill calculations. Treatment works which would not receive any growth were scoped out of all modelling. **Table 5-14** outlines which WwTWs were selected for RQP modelling.

WwTW	Capacity headroom post growth	Scoped in for RQP?	
Romsey	64	Yes	
Fullerton	97	Yes	
Chickenhall Eastleigh	76	No – tidal discharge	

5.5.3 Technically Achievable Limit

For the purposes of this modelling, the TAL for each of the pollutants is summarised in **Table 5-15**. TAL is the lowest possible effluent concentration that can be achieved for each pollutant, using conventional existing treatment technology.

Table 5-15 Technical Achievable limit for pollutants (SEPA, 2016).

Pollutant	Statistic	Concentration (mg/l)
BOD	95%ile	5
Ammonia	95%ile	1
Phosphate	Mean	0.25

5.5.4 Model Outputs

The results below show the required discharge quality at the 95th percentile, and therefore provides the lower tier permit which water companies would be expected to work to. A Red Amber Green (RAG) assessment is presented in **Table 5-16** with the results of the RQP modelling. The RAG assessment refers to the following categories:

Green: No changes to existing permit limits are required – growth can be accepted with no significant changes to the permits.

Amber: Changes to the discharge permit is required to meet WFD / Habitats Regulations objectives. Upgrades may have phasing implication for growth.

Red: Changes to the discharge permit are beyond what can be achieved with conventional treatment (i.e., below the TAL). The WFD objectives cannot be met.

Table 5-16: Results of RQP modelling

WwTWs	Scenarios	Phosphate	Ammonia	BOD	
Fullerton	No deterioration	0.033	0.011		
	Limit deterioration to 10%	0.052 0.053		N/A due to no WFD	
	Ensure no class deterioration	0.27	1.63	status – BOD scoped in for Load Standstill	
	Not limit future to achieve good	Not less than good	Not less than good		

WwTWs	Scenarios	Phosphate	Ammonia	BOD
	No deterioration	0.053	-	-
	Limit deterioration to 10%	1	-	-
Romsey	Ensure no class deterioration	3.8	122	581
	Not limit future to achieve good	Not less than good	Not less than good	Not less than good

The results of the RQP show that discharges from Fullerton treatment works for Phosphate and Ammonia will lead to a greater than 10% deterioration at the mixing point after growth. Whilst the WFD aims to prevent within class deterioration, this can be allowed. Preventing a between class deterioration in WFD boundaries can be achieved by reducing the permitted discharges. Phosphorus would need to be reduced to TAL (i.e. 0.25mg/l), whereas Ammonia would need to be reduced from 3 mg/l to 1.5 mg/l. The receiving waterbody is already at a High status. There could be some time implications associated with Fullerton operating to TAL which may impact on when future growth can be accepted.

There is environmental capacity to accept additional flows at Romsey WwTWs without preventing a deterioration in within the WFD classification or a between class deterioration, under the current permit limits. As such, no significant changes will be required at Romsey.

Both treatment works assessed are unable to prevent no deterioration at the mixing point between the tributary and the effluent of the treatment works. However, both of the treatment works do not discharge directly to a designated site which would be subject to the Habitat Regulations. As such, the no deterioration test does not draw conclusions on the potential impacts to the downstream designated site(s). This test only concludes that no deterioration at the mixing point will not be possible, but this will not impact on the ability to deliver the potential sites.

5.6 Load Standstill Calculations

Load standstill calculations have been used to determine the future permits required for phosphate, ammonia and BOD at the respective treatment works. These calculations are appropriate for WwTWs that discharge into an estuarine water body.

The findings of the load standstill calculations are presented in **Table 5-17**. The RAG assessment criteria for the effluent quality refers to the following categories:

Green: No changes to existing permit limits are required – growth can be accepted with no significant changes to the permits.

Amber: Changes to the discharge permit is required, but within conventional treatment processes. **Red:** Changes to the discharge permit are beyond what can be achieved with conventional treatment (i.e., below the TAL).

Table 5-17: Results of Load Standstill calculations

Current DWF permit (m³/day)	887	32,000	19291
Q80 flow (m³/day)	607	23,840	17270
Headroom (m³/day)	280	8160	2021
Phosphate permit limit (mg/l) (annual average)	-	1	N/A
Ammonia permit limit (mg/l) (95%ile)	5	2.8	N/A
BOD permit limit (mg/l) (95%ile)	25	12	15
Future flow post growth (m³/day)	968	24,478	18656
Phosphate effluent quality permit required (mg/l) (annual average)	-	0.97	-
Ammonia effluent quality permit required (mg/l) (95%ile)	3.13		-
BOD effluent quality permit required (mg/l) (95%ile)		11.69	13.89

The results show that in all cases there may be a need for improvements to the quality standards. However, these improvements are all possible within conventional treatment. Minor alterations to the permits at Eastleigh will be required to ensure there is no deterioration in the current quality for all of the watercourses. Due to the significant increase in flow at Ludgershall, more significant changes to the permits may be required, however, these are still within conventional treatment processes. As a result, growth at these treatment works can be achieved without an impact on downstream water dependant designated sites. Following growth, Ludgershall will exceed the current DWF permit, which could lead to minor timing implications for the acceptance of new growth.

6 Summary of WCS Outcomes

6.1 Summary review of Southern Water's dWRMP (compiled)

Deployable output (DO) (SW potable water) changes:

SW have implemented the following changes to the supply of potable water at two of its water treatment works (WTW), resulting in a constraint as its Andover WTW as follows:

- Andover WTW has had a reduction in peak DO of 1.48 mega litres per day (1,480,000 litres/day) to reflect hydraulic yield constraint. However, SW have plans to update their pipes network to connect Andover with Winchester and Southampton East supply zones to enable circulation of water to areas where there is need. No timescale has been given.
- Whitchurch WTW has had an increase in minimum DO of 0.79% due to infrastructure improvement, however this site is northeast of the administrative boundary of TVBC, so it is unclear if this will have any impact.

Consultation response from SW with reference to WwTW capacity (13/12/2023):

- For Fullerton WwTW, there are plans for a new growth scheme for dry weather flow permit compliance, but this is still in the planning stage and no timescale has been confirmed, at present.
- For Ludgershall WwTW, there are plans for a new growth scheme for treatment capacity which will be delivered in combination with the Total Nitrogen (TN) driver. This is still in the planning stage and no timescale has been confirmed, at present.
- For Romsey WwTW, SW have no plans to upgrade the site and are not planning on increasing capacity in terms of flow.
- For Chickenhall Eastleigh WwTW SW have no plans to upgrade the site and are not planning on increasing capacity in terms of flow.

Southern Water has **proposed strategies** in its dWRMP to bring in changes and updates to address the supply deficit of potable water going forward by:

- A1: Preventing leaks
- A2: Installing smart meter penetrations from 88% to 92%
- A3: Target 100 campaign to reduce personal water use to 100 litres per day by promoting water efficiency.

Water supply options for their next 5-year plan:

- Catchment schemes to protect the rivers.
- Update their pipes network to connect Andover, Winchester and Southampton East supply zones (will provide more water circulation to areas where there is need).
- Build a desalination plant on the Solent to supply drinking water and a new transfer pipeline.
- Working with Portsmouth Water to develop the Havant Thicket Reservoir which will be able to provide an extra 21 million litres of water once up and running.
- Recycle water from WwTWs in Portsmouth or Southampton to augment flows in the River Itchen.
- Apply for drought permits to continue abstracting water in dry weather from the Rivers Test and Itchen and Andover groundwater source (subject to Environment Agency scrutiny and approval).

6.2 Environment Agency CAMS – Abstraction Management Plan

A Catchment Abstraction Management Strategy (CAMS) sets out how the Environment Agency will manage water abstraction in each catchment (e.g., the Rivers Test and Itchen catchments). CAMS documents describe where water is available for abstraction and the implications that water resource availability has for new and existing water abstraction licences.

The EA has assessment points along both rivers to monitor flow at different times of the year. Water resource availability is calculated by four different flow rates, i.e., Q95 (the flow of a river which is exceeded on average for 95% of the time i.e., low flow), Q70, Q50, and Q30 (higher flow).

The flows in the River Anton catchment (part of the wider River Test catchment) are impacted by a major public water abstraction by the Southern Water treatment works that supplies potable water to Andover, and a Wastewater Treatment Works discharge at Fullerton. These influences serve to deplete the River Anton. The Environment Agency is investigating the impact of abstraction and licence changes were being implemented.

The assessment of impacts from abstractions on the River Itchen have led the EA to review their consents process. As a result, three fish farm licences have been modified to protect flows in the river. The EA have been working with water companies and other private schemes to add conditions to their abstraction licences to protect the River Itchen SAC.

The EA state that they will not grant further abstraction licences in those areas the groundwater unit balance shows more water has been abstracted based on the amount available, thus restricting the supply of potable water for human consumption.

In addition, both rivers have constraints to licences such as 'hands off flow' (HOF) conditions to protect the environment. These conditions specify that if the flow in the river drops below what is needed for environmental protection, abstraction must reduce or stop. Some water abstraction permits can also have limitations based on the hydrometric year, i.e., from October to March.

The HOF restrictions that affect the TVBC development sites are:

- River Anton at Fullerton
- Lower River Test and Solent Maritime SAC
- The River Itchen near Chickenhall

To conclude, there is very little scope for any additional abstraction that would not cause additional impacts on sensitive water features. Consequently, the EA state "there is a presumption against new consumptive groundwater abstractions from the Chalk".

6.3 Southern Water's Drainage and Wastewater Management Plan

SW's Drainage and Wastewater Management Plan (DWMP) establishes a strategy for upgrading the region's drainage and wastewater treatment systems, marking a pathway for future infrastructure investments. The guidance categorises and measures the level of current and/or potential risk or vulnerability in the sewer catchment to future changes from developments or climate change. SW's sewage and treatment catchment areas for proposed development allocations that fall within the Test Valley Borough are Chickenhall Eastleigh, Fullerton, Romsey and Ludgershall. The indictor vulnerability to future changes and Planning Objectives for these catchments are summarised in two table within the report. Notably, the Ludgershall catchment is excluded from this level of detailed evaluation, being deemed not of sufficient size to warrant such assessment. For the Ludgershall sewage treatment, SW has communicated that there are no planned options or future investments planned for this catchment (RHDV, 2023).

Based on Chickenhall Eastleigh's indicator vulnerability assessment, it is shown that the catchment is vulnerable to 9 of the 17 indicators.

Consultation Response from Southern Water (13/12/2023): For Chickenhall Eastleigh WwTW SW have no plans to upgrade the site and are not planning on increasing capacity in terms of flow.

Based on Fullerton's indicator vulnerability assessment, it is shown that the catchment is vulnerable to ten of the 17 indicators. For Fullerton WwTWs, there are plans for a new growth scheme for dry weather flow permit compliance, but this is still in the planning stage and no timescale has been confirmed, at present.

Based on Romsey's indicator vulnerability assessment, it is shown that the catchment is vulnerable to 8 of the 17 indicators. For Romsey WwTW, SW have no plans to upgrade the site and are not planning on increasing capacity in terms of flow. For Ludgershall WwTWs, there are plans for a new growth scheme for treatment capacity which will be delivered in combination with the Total Nitrogen (TN) driver. This is still in the planning stage and no timescale has been confirmed, at present. With the addition of the proposed sites at Ludgershall, the treatment works is projected to exceeds it's DWF permit. As such, the new growth scheme may need to be in place prior to the connection of the proposed sites, which is likely to have implications on phasing.

References

DEFRA, Test Upper and Middle Operational Catchment (03/08/23), accessed 21/08/23 <u>https://environment.data.gov.uk/catchment-planning/OperationalCatchment/3485</u>

Test and Itchen Abstraction Licensing Strategy (2019), accessed 17/10/23 https://assets.publishing.service.gov.uk/media/5cab14f240f0b66559aa1f80/Test_and_Itchen_Abstraction_ Licence_Strategy.pdf

Gov.UK, Water cycle studies guidance (2021), accessed 25/04/23 https://www.gov.uk/guidance/water-cycle-studies

Ministry of Housing, Communities & Local Government (2021), National Planning Policy Framework <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/100575</u> <u>9/NPPF_July_2021.pdf</u>

National River Flow Archive, daily flow data, accessed 16/08/2023 <u>https://nrfa.ceh.ac.uk/data/search</u>

Natural England, River Itchen Special Area of Conservation, Evidence Pack (2022), accessed 06/09/23 <u>file:///C:/Users/924473/Downloads/TIN197%20Edition%201%20River%20Itchen%20SAC%20-</u> <u>%20Evidence%20Pack.pdf</u>

River basin management plan for the South East River Basin District, September 2022, accessed 17/08/23 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/111256 O/South east river basin management plan 2022 HRA.pdf

Southern Water, Draft Drought Plan 2022 (31/03/23), accessed 15/08/23 <u>https://www.southernwater.co.uk/media/4798/draft-drought-plan-2022.pdf</u>

Southern Water, Water Resources Management Plan for 2020-70, December 2019, accessed 15/08/23 https://www.southernwater.co.uk/media/3656/5025_wrmp_-v11.pdf

Test Valley Borough Council Adopted Local Plan 2011 – 2029, accessed 16/08/2023 <u>https://tvbc.maps.arcgis.com/apps/MapJournal/index.html?appid=b2d7ce0c3b554a7d9daa2881c025db0c</u>

Test Valley Borough Council, Authority's Monitoring Report 2021-2022 (AMR), accessed 04/09/23 <u>file:///C:/Users/924473/Royal%20HaskoningDHV/Project-PC5245-Test-Valley-WCS%20-</u>%20Team/WIP/Reports/Test%20Valley%20Borough%20Council%20Authority%20Monitoring%20Report %202021_22.pdf

Test Valley Borough Council Biodiversity Action Plan (2022), accessed 28/08/23 https://www.testvalley.gov.uk/communityandleisure/naturereserves/biodiversity-action-plan

Water Stressed Areas – final classification 2021, Environment Agency, 03/05/2023 <u>https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fassets.publishing.service.gov.uk%2</u> <u>Fgovernment%2Fuploads%2Fsystem%2Fuploads%2Fattachment_data%2Ffile%2F998237%2FWater_str</u> <u>essed_areas____final_classification_2021.odt&wdOrigin=BROWSELINK</u>

Appendices

5 February 2024 **TEST VALLEY WATER CYCLE STUDY**

Appendix A – Data Sources

A1- Data sources used in the WCS Tables and Figures and where they were sourced from.

Type of Information	Data Source
DEFRA MAGIC map	MAGIC (defra.gov.uk)
Habitat Regulations Assessment Regulations 18	www.testvalley.gov.uk/assets/attach/2500/REG-18-HRA.pdf
Draft Test Valley local plan	https://testvalley.gov.uk/planning-and-building/planningpolicy/local- development-framework/draft-local-plan-2040
dWRMP Southern Water	https://www.southernwater.co.uk/dwmp
Environment Agency Catchment Data Explorer	England Catchment Data Explorer
JNCC UK BAP Priority species	UK BAP Priority Species JNCC - Adviser to Government on Nature Conservation
NBN Atlas Test Valley Species Occurrence records	<u>Test Valley NBN Atlas</u>
Natural England Site Viewer	https://designatedsites.naturalengland.org.uk/SiteSearch.aspx
Office for National Statistics Census 2021	Census - Office for National Statistics (ons.gov.uk)

Appendix B - Water Framework Directive status and objectives of water bodies

Table B 1 Itchen WFD Water Body Information

Water body name		Itchen Water Body	
Water body ID		GB107042022580	
		Test and Itchen	
-		Itchen	
		Not Designated artificial or h	neavily modified
Sensitive habitats	,	Nitrates Directive (Hamble E Hampshire Chalk Special Protection Area (Sol Special Area of Conservatio Shellfish Water Directive (So Drinking Water Protected Ar Urban Waste Water Treatmon (Hampshire))	Estuary Eutrophic NVZ and lent and Dorset Coast SPA) n (River Itchen SAC) puthampton Water) rea (Itchen)
Current Overall Status		Good ecological status	
	ial	Good	
-		-	nt (fail in 2019)
	1	·	
Quality elements	Elements		Objective
	Overall	Good	Good (2015)
6			Good (2015)
Biological		High	Good (2015)
	Phytobenthos Combined	Good	Good (2015)
	Overall	Supports Good	Supports Good (2015)
Hydromorphological	Hydrological Regime	Does not support good	Supports Good (2027) low confidence
	Overall	High	Good
	Capacity	High	Good (2015)
		High	Good (2015)
Physico-chemical	BOD		Good (2015)
			Good (2015)
			Good (2015)
			Good (2015) Good (2015)
Specific pollutants			High (2015)
		-	Not Assessed (2015)
Supporting elements (Surface Water)	Mitigation Measures	-	-
Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Priority substances	Overall	Does not require assessment	Good (2015)
Other Pollutants	Overall	Does not require assessment	Good (2015)
	Benzo(q-h-i) perylene		
Reasons for not achieving		le	
Good Status			
	Polybrominated diphenyl ethers (PBDE)		
	Hydrological Regime		
	Water body ID Water body type Management catchment Operational catchment Hydromorphological desig Sensitive habitats Current Overall Status Objective Status Ecological Status / Potent Chemical Status Quality elements Biological Hydromorphological Physico-chemical Specific pollutants Supporting elements (Surface Water) Priority hazardous substances Priority substances Other Pollutants Reasons for not achieving	Water body ID Water body type Management catchment Operational catchment Hydromorphological designation Sensitive habitats Current Overall Status Objective Status Ecological Status / Potential Chemical Status Quality elements Elements Overall Fish Biological Hydromorphological Hydromorphological Hydromorphological Hydromorphological Hydrological Regime Overall Hydrological Regime Overall Hydrological Regime Overall Acid Neutralising Capacity Ammonia (Phys-Chem) BOD Dissolved oxygen pH Phosphate Temperature Supporting elements (Surface Water) Substances Overall Mitigation Measures Assessment Priority substances </td <td>Water body ID GB107042022580 Water body type River Management catchment Test and ltchen Operational catchment Itchen Hydromorphological designation Not Designated artificial or I Not Designated artificial or I Nitrates Directive (Hamble E Hampshire Chalk Special Protection Area (So Special Protection Area (So Special Area of Conservatio Schellifish Water Directive (Status Current Overall Status Good ecological status Objective Water Treatm (Hampshire)) Current Overall Status / Potential Good Odd water Treatm (Hampshire)) Cological Status / Potential Good Good Biological Elements Classification Quality elements Elements Classification Macrophyles and Phylobenthos Combined Good Hydromorphological Hydrological Regime Does not supports Good Hydromorphological Overall Supports Good Hydrological Regime Does not support good Overall BOD High High BOD High High BOD High</td>	Water body ID GB107042022580 Water body type River Management catchment Test and ltchen Operational catchment Itchen Hydromorphological designation Not Designated artificial or I Not Designated artificial or I Nitrates Directive (Hamble E Hampshire Chalk Special Protection Area (So Special Protection Area (So Special Area of Conservatio Schellifish Water Directive (Status Current Overall Status Good ecological status Objective Water Treatm (Hampshire)) Current Overall Status / Potential Good Odd water Treatm (Hampshire)) Cological Status / Potential Good Good Biological Elements Classification Quality elements Elements Classification Macrophyles and Phylobenthos Combined Good Hydromorphological Hydrological Regime Does not supports Good Hydromorphological Overall Supports Good Hydrological Regime Does not support good Overall BOD High High BOD High High BOD High

Wate Body Level

Table B 2 Bow Lake WFD Water Body Information

	Water body name		Bow Lake	
	Water body ID		GB107042016650	
	Water body type		River	
ails	Management catchment		Test and Itchen	
Det	Operational catchment		Itchen	
_ ∠	Hydromorphological desig	unation	Not designated artificial or he	avily modified
sod		Jindion	Nitrates Directive (Hamble Es	
Water Body Details	Sensitive habitats		(TraC) and Bow Lake NVZ)	
N ai	Current Overall Status		Bad	
-	Objective Status			
	Ecological Status / Potenti	ial	Bad	
	Chemical Status		Does not require assessment	(fail in 2019)
	Quality elements	Elements	Classification	Objective
		Overall	Bad	Good (2027) Low confidence
	Biological	Fish	Bad	Good (2027) Low confidence
	Diological	Invertebrates	Moderate	Good (2027) Low confidence
		Macrophytes and Phytobenthos Combined	Good	Good (2015)
		Overall	Supports good	Supports good (2015)
Ecological	Hydromorphological	Hydrological Regime	Does not support good	Supports good (2027) low confidence
õ		Overall	Gppd	Good (2015)
ЕСС		Acid Neutralising Capacity	High	Good (2015)
		Ammonia (Phys-Chem)	Good	Good (2015)
	Physico-chemical	BOD	-	-
		Dissolved oxygen	Good	Good (2015)
		pH	High	Good (2015)
		Phosphate	Good	Good (2015)
	Specific pollutants	Temperature Overall	High	Good (2015) High (2015)
		Overall	High	Not Assessed
	Supporting elements (Surface Water)	Mitigation Measures Assessment	-	-
al	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
Ū	Other Pollutants	Overall	Does not require assessment (good in 2019)	Good (2015)
		Invertebrates – poor nutrie	ent management and commercia	al fin fisheries
L.			ent and barriers – ecological dis	
Mitigation Measures Assessment		Perfluorooctane sulphonate – unknown (pending investigation)		
Mitigation Measures ssessmen	Reasons for not achieving		nknown (pending investigation)	
itig eas ies	Good Status			
N N Ass		Mercury and its compound		
		Polybrominated diphenyl	ethers (PBDE)	
		Hydrological regime		

Water Body Level Measures

Table B 3 River Arle WFD Water body information

	Water body name		River Arle	
	Water body ID		GB107042022610	
	Water body type		River	
<u>v</u>	Management catchment		Test and Itchen	
tail	Operational catchment		Itchen	
De		un etile u		
φ	Hydromorphological desig	Ination	Heavily modified	utem (Eutrembie NIV/7
Water Body Details	Sensitive habitats		Nitrates Directive (Hamble Es (TraC) and Hampshire Chalk) Special Area of Conservation	
Ň	Current Overall Status		Moderate	
	Objective Status			
	Ecological Status / Potenti	ial	Moderate	
	Chemical Status		Does not require assessment	(fail in 2019)
	Quality elements	Elements	Classification	Objective
	Quality elements	Overall	Moderate	Good (2015)
			WOUCHALE	Good (2015) Good (2027) low
	D: 1	Fish	-	confidence
	Biological	Invertebrates	-	Good (2015)
		Macrophytes Sub Element	Moderate	Not assessed
	Hydromorphological	Overall	Supports good	Supports Good (2015)
-	Tydromorphological	Hydrological Regime	Supports good	Supports Good (2015)
dică		Overall	High	Good (2015)
		Acid Neutralising Capacity	High	Good (2015)
Ecological		Ammonia (Phys-Chem)	High	Good (2015)
	Physico-chemical	BOD	High	Good (2015)
	· · · / · · · · · · · · · · · · · · · · · · ·	Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate	High	Good (2015)
		Temperature	High	Good (2015)
	Specific pollutants	Overall	High	High (2015)
	Supporting elements	Overall	Moderate	Not assessed
	(Surface Water)	Mitigation Measures Assessment	Moderate or less	-
cal	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2015)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
C	Other Pollutants	Overall	Does not require assessment	Does not require assessment
5		Polybrominated diphenyl	ethers (PBDE)	
Mitigation Measures Assessmen t	Reasons for not achieving Good Status	Mercury and Its Compour	ids	
e t a <				

Table B 4 River Blackwater WFD Water body information

	Motor books norma		Diver Diselevator	
	Water body name		River Blackwater	
	Water body ID		GB107042016810	
	Water body type		River	
ails	Management catchment		Test and Itchen	
Deta	Operational catchment		Test Lower and Southampton	Streams
y D	Hydromorphological desig	Ination	Not designated artificial or he	avily modified
3od			Nitrates Directives (R. Blackw	
erE	Sensitive habitats Current Overall Status Objective Status		Estuary Eutrophic NVZ (TraC Special Area of Conservation	
Water Body Details			Moderate	(The new lorest SAC)
>			Woderate	
			Moderate	
	Ecological Status / Potenti	ldi		(E-11 in 0040)
	Chemical Status		Does not require assessment	(Fall in 2019)
	Quality elements	Elements	Classification	Objective
		Overall	Moderate	Good (2017) low confidence
	Biological	Fish	-	-
	Biological	Invertebrates	Good	Good (2015)
		Macrophytes Sub	Moderate	Good (2017) low
		Element Overall	Supports Good	confidence Supports Good (2015)
	Hydromorphological	Hydrological Regime	Supports Good	Supports Good (2015)
cal		Overall	Moderate	Good (2027)
Ecological		Acid Neutralising Capacity	High	Good (2015)
Ë		Ammonia (Phys-Chem)	Moderate	Good (2015)
	Physico-chemical	BOD	-	-
		Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate	Poor	Good (2027)
	Creatific rellutente	Temperature	High	Good (2015) High (2015)
	Specific pollutants	Overall Overall	High Supports Good	Not Assessed
	Supporting elements (Surface Water)	Mitigation Measures Assessment	Supports Good	-
al	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
C	Other Pollutants	Overall	Does not require assessment	Not Assessed
t		Macrophytes and Phytobe	enthos Combined - sewage discl	harge (continuous)
Mitigation Measures Assessment	Reasons for not achieving	Phosphate - sewage discl	harge (continuous)	
Aitige Aeas ssess	Good Status	Polybrominated diphenyl	ethers (PBDE)	
As		Mercury and Its Compour	lds	
<i><u><u></u></u></i> <u></u>				

Wa Bo dv

Table B 5 River Dun WFD Water body information

Vater body ID GB107042022840 Water body type River Water body type River Operational catchment Test and tuben Operational catchment Test Lowe and Southampton Streams Hydromorphological designation Heavily Modified Sensitive habitats (TraC) and Hampshire Chalk) Current Overall Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Biological Overail Poor Biological Fish Poor Good (2027) - low confidence Invertebrates High Good (2027) - low confidence Good (2027) - low confidence Invertebrates High Good (2027) - low confidence Good (2027) - low confidence Invertebrates High Good (2027) - low confidence Good (2027) - low confidence Invertebrates High Good (2027) - low confidence Confidence Invertebrates High Good (2027) - low confidence Confidence Invertebrates High Good (2027) - low confidence		Water body name		Dun	
Vater body type River Management catchment Test and lichen Hydromorphological designation Heavily Modified Sensitive habitats Nitrates Directive (Hamble Estuary Eutrophic NVZ (TraC) and Hampshire Chalk) Safeguard zone (River Test) Current Overall Status Moderate Objective Status Moderate Ecological Status / Potential Moderate Diality elements Classification Objective (Good (2027) - low confidence Biological Fish Poor Cood (2027) - low confidence Hydromorphological Overail Poor Cood (2027) - low confidence Biological Fish Poor Cood (2027) - low confidence Hydromorphological Overail Poor Cood (2027) - low confidence Hydromorphological Overail - Not Assessed Hydromorphological Overail - - Hydrobal Overail - - Acid Neutralising Capacity - - - Supporting elements Subolved oxygen High Good (2015) <					
Management catchment Test and itchen Operational catchment Test Lowe and Southampton Streams Hydromorphological designation Heavily Modified Sensitive habitats Nitrates Directive (Hamble Estuary Eutrophic NVZ (TraC) and Hampshire Chalk) Current Overall Status Moderate Ecological Status / Potential Moderate Chemical Status Overall Biological Fish Biological Fish Hydromorphological Overall Poor Good (2027) - low confidence Imagement Cachment - Noterate Good (2027) - low confidence Chemical Status Overall Poor Good (2027) - low confidence Imagement Cachment - Not Assessed Supports Good (2015) Hydromorphological Overall - Physico-chemical				River	
Objective Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Hydromorphological Fish Poor Good (2027) - low confidence Hydromorphological Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Acid Neutralising Capacity - - - Acid Neutralising Capacity - - - Ammonia (Phys-Chem) High Good (2015) - BoD - - - - Objective Overall High Good (2015) - - BoD - - - - - Overall High Good (2015) - - - BoD - - - - -	<u>s</u>			Test and Itchen	
Objective Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Hydromorphological Fish Poor Good (2027) - low confidence Hydromorphological Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Acid Neutralising Capacity - - - Acid Neutralising Capacity - - - Ammonia (Phys-Chem) High Good (2015) - BoD - - - - Objective Overall High Good (2015) - - BoD - - - - - Overall High Good (2015) - - - BoD - - - - -	eta			Test Lowe and Southampton	Streams
Objective Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Hydromorphological Fish Poor Good (2027) - low confidence Hydromorphological Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Acid Neutralising Capacity - - - Acid Neutralising Capacity - - - Ammonia (Phys-Chem) High Good (2015) - BoD - - - - Objective Overall High Good (2015) - - BoD - - - - - Overall High Good (2015) - - - BoD - - - - -	Ő		nation		
Objective Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Hydromorphological Fish Poor Good (2027) - low confidence Hydromorphological Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Acid Neutralising Capacity - - - Acid Neutralising Capacity - - - Ammonia (Phys-Chem) High Good (2015) - BoD - - - - Objective Overall High Good (2015) - - BoD - - - - - Overall High Good (2015) - - - BoD - - - - -	ter Bod		,	(TraC) and Hampshire Chalk	
Objective Status Moderate Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Hydromorphological Fish Poor Good (2027) - low confidence Hydromorphological Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Acid Neutralising Capacity - - - Acid Neutralising Capacity - - - Ammonia (Phys-Chem) High Good (2015) - BoD - - - - Objective Overall High Good (2015) - - BoD - - - - - Overall High Good (2015) - - - BoD - - - - -	Vat	Current Overall Status			
Ecological Status / Potential Moderate Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) – low confidence High Poor Good (2027) – low confidence Confidence Hydromorphological Fish Poor Good (2027) – low confidence Hydromorphological Overall Supports good Supports Good (2015) Hydromorphological Overall Supports good Supports Good (2015) Physico-chemical Overall Supports Good (2015) Good (2015) BOD - - - - BoDD - - - - Physico-chemical BOD - - - BOD - - - - - BOD - - - - - - BODD - - - - - - -	-	Objective Status		Moderate	
Chemical Status Does not require assessment (fail in 2019) Quality elements Elements Classification Objective Biological Overall Poor Good (2027) - low confidence Confidence Hydromorphological Fish Poor Good (2027) - low confidence Confidence Hydromorphological Overall Poor Good (2027) - low confidence Confidence Hydromorphological Overall Supports good Supports Good (2015) Not Assessed Hydromorphological Overall Supports good Supports Good (2015) Overall Physico-chemical BOD - - - - BOD - - - - - Physico-chemical BOD - - - - BOD - - - - - - Supporting elements (Surface Water) Overall - - - - - Supporting elements (Surface Water) Overall - - Good (ial	Moderate	
Total Overall Poor Good (2027) - low confidence Biological Fish Poor Good (2027) - low confidence Invertebrates High Good (2027) - low confidence Hydromorphological Overall Supports good Supports Good (2015) Hydromorphological Overall Supports good Supports Good (2015) Physico-chemical Overall Supports Good (2015) Overall Physico-chemical BoD - - BoD - - - Dissolved oxygen High Good (2015) - Supporting elements (Surface Water) Overall - - Witigation Measures - - - Assessment - - - Supporting elements (Surface Water) Overall - - Mitigation Measures - - - - Assessment - - - - - Supporting elements (Surface Water) Overall Does not require assess				Does not require assessmen	t (fail in 2019)
Priority hazardous substances Overall Poor Good (2027) – low confidence Biological Fish Poor Good (2027) – low confidence Hydromorphological High Good (2027) – low confidence Hydromorphological Overall Supports good Supports Good (20215) Hydromorphological Overall Supports good Supports Good (2015) Physico-chemical Overall Supports Good (2015) - Physico-chemical Overall Good (2015) - BOD - - - Dissolved oxygen High Good (2015) - Dissolved oxygen High Good (2015) - Supporting elements (Surface Water) Overall - - - Mitigation Measures substances Overall - - - Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall		Quality elements	Elements	Classification	Objective
Image: second					
Biological Pisit Pool confidence Invertebrates High Good (2015) Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports Good (2015) Hydromorphological High Good (2015) Physico-chemical Overall High Good (2015) Physico-chemical BOD - - Ammonia (Phys-Chem) High Good (2015) BOD - - - Dissolved oxygen High Good (2015) PH High Good (2015) Phosphate High Good (2015) Phosphate High Good (2015) Supporting elements (Surface Water) Overall - Substances Overall - Good (2027) - low confidence Verall - Good (2027) - low confidence Good (2027) - low confidence Substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does n			Overall	Poor	confidence
Invertebrates High Good (2015) Macrophytes Sub Element - Not Assessed Hydromorphological Overall Supports Good (2015) Hydrological Regime High Good (2015) Physico-chemical Overall High Good (2015) Physico-chemical BOD - - BOD - - - Dissolved oxygen High Good (2015) - Physico-chemical BOD - - BOD - - - Dissolved oxygen High Good (2015) - Phosphate High Good (2015) - Phosphate High Good (2015) - Supporting elements Overall - - - Supporting elements Overall - - - - Supporting elements Overall - - - - - Supporting valarces Overall Does not require assessment (f		Distantial	Fish	Poor	
Image: State		Biological	Invertebrates	High	
Image: Section Sectin Section Sectin Section Section Section Section Section Section Se				Tigh	`
Bydromorphological Hydrological Regime High Supports Good (2015) Physico-chemical Overall High Good (2015) Physico-chemical BOD - - BOD - - - Dissolved oxygen High Good (2015) - Physico-chemical BOD - - Dissolved oxygen High Good (2015) - Ph High Good (2015) - Phosphate High Good (2015) - Phosphate High Good (2015) - Phosphate High Good (2015) - Supporting elements Overall - - (Surface Water) Mitigation Measures - - Verall - - - - Priority hazardous Overall - - - Substances Overall Does not require assessment (fail in 2019) Good (2015) Priority substances Overall			Element	-	Not Assessed
Torum Hydrological Regime High Supports Good (2015) Overall High Good (2015) Good (2015) Physico-chemical Acid Neutralising Capacity - - BOD - - - Dissolved oxygen High Good (2015) - BOD - - - - Dissolved oxygen High Good (2015) - Physico-chemical BOD - - - Dissolved oxygen High Good (2015) - Phosphate High Good (2015) - Specific pollutants Overall - - Supporting elements (Surface Water) Overall - - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015)		Hydromorphological			
BOD - - Dissolved oxygen High Good (2015) pH High Good (2015) Phosphate High Good (2015) Phosphate High Good (2015) Specific pollutants Overall - Supporting elements (Surface Water) Overall - Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall - Good (2027) – low confidence Priority substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Mitigation Measures Assessment Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Fish	le	Tyaromorphological			Supports Good (2015)
BOD - - Dissolved oxygen High Good (2015) pH High Good (2015) Phosphate High Good (2015) Phosphate High Good (2015) Specific pollutants Overall - Supporting elements (Surface Water) Overall - Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall - Good (2027) – low confidence Priority substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Fish – Polybrominated diphenyl ethers (PBDE)	gice			High	Good (2015)
Physico-chemical BOD - - - - Dissolved oxygen High Good (2015) - - - Dissolved oxygen High Good (2015) -	olo			-	-
BOD - - Dissolved oxygen High Good (2015) pH High Good (2015) pH High Good (2015) Phosphate High Good (2015) Specific pollutants Overall - Supporting elements (Surface Water) Overall - Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall - Good (2027) – low confidence Priority substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Mitigation Measures Assessment Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) -	S S			High	Good (2015)
Dissolved oxygen High Good (2015) pH High Good (2015) Phosphate High Good (2015) Specific pollutants Overall - Supporting elements (Surface Water) Overall - Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) — — —		Physico-chemical	BOD		-
pH High Good (2015) Phosphate High Good (2015) Temperature High Good (2015) Specific pollutants Overall - Supporting elements (Surface Water) Overall - Mitigation Measures (Surface Water) - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Mitigation Measures Assessment Fish – Poor soil management and barriers (proprime				High	Good (2015)
Temperature High Good (2015) Specific pollutants Overall - - Supporting elements (Surface Water) Overall - Good (2027) – low confidence Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Event			рН	High	
Specific pollutants Overall - - Supporting elements (Surface Water) Overall - Good (2027) – low confidence Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Mitigation Measures Assessment In 2019 Good (2015) In 2019 Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Event Event					
Supporting elements (Surface Water) Overall - Good (2027) – low confidence Mitigation Measures Assessment - Good (2027) – low confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Reasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Event				0	Good (2015)
Supporting elements (Surface Water) Overall - confidence Mitigation Measures Assessment - Good (2027) – Iow confidence Priority hazardous substances Overall Does not require assessment (fail in 2019) Good (2063) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Test Seess Breasons for not achieving Good Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Event		Specific pollutants	Overall	-	- -
Image: Second		Supporting elements	Overall	-	
substances Overall assessment (fail in 2019) Good (2003) Priority substances Overall Does not require assessment (fail in 2019) Good (2015) Other Pollutants Overall Does not require assessment (fail in 2019) Good (2015) Image: Second Status Overall Does not require assessment (fail in 2019) Good (2015) Image: Second Status Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE) Fish – Poor soil management and barriers (PBDE)				-	Good (2027) – Iow
Other Pollutants Overall Decention require assessment (fail in 2019) Good (2015) regions assessment (fail in 2019) Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Reasons for not achieving Good Status Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE)	cal		Overall	assessment (fail in 2019)	Good (2063)
Other Pollutants Overall December requires assessment (fail in 2019) Good (2015) regin service Fish – Poor soil management and barriers (ecological discontinuity) Mitigation Measures Assessment Reasons for not achieving Good Status Polybrominated diphenyl ethers (PBDE) Polybrominated diphenyl ethers (PBDE)	hemi	Priority substances	Overall	assessment (fail in 2019)	Good (2015)
Reasons for not achieving Good Status Reasons for not achieving Reason	0	Other Pollutants	Overall		Good (2015)
Reasons for not achieving Good Status Mitigation Measures Assessment Polybrominated diphenyl ethers (PBDE) Mercury and Its Compounds	_ t		Fish – Poor soil managem	ent and barriers (ecological dis	scontinuity)
Good Status Polybrominated diphenyl ethers (PBDE) Mercury and Its Compounds	ures ures	Reasons for not achieving	Mitigation Measures Asse	ssment	
Mercury and Its Compounds	Aitiga Aeası Sess		Polybrominated diphenyl	ethers (PBDE)	
	As		Mercury and Its Compoun	ds	
	0 t a <	l			

Table B 6 Wallop Brook WFD Water body information

	Water body name		Wallop Brook	
	Water body ID		GB107042022650	
	Water body type		River	
S	Management catchment		Test and Itchen	
tail	•			
De	Operational catchment		Test Upper and Middle	
dy	Hydromorphological desig	nation	Not designated artificial or her	
Water Body Details	Sensitive habitats		Nitrates Directive (Hamble Es (TraC), Hampshire Chalk and Safeguard Zone (River Test)	
Wa	Current Overall Status		Good	
	Objective Status		Good	
	Ecological Status / Potenti	al	Good	
	Chemical Status		Does not require assessment	(fail in 2019)
	Quality elemente	Elemente		
	Quality elements	Elements	Classification	Objective
		Overall	Good	Good (2015)
	Piological	Fish		- Cood (2015)
	Biological	Invertebrates Macrophytes Sub Element	High Good	Good (2015) Good (2015)
		Overall	Supports good	Supports good (2015)
	Hydromorphological	Hydrological Regime	Supports good	Supports good (2015)
<u></u>		Overall	Good	Good (2015)
Ecological		Acid Neutralising Capacity	High	Good (2015)
00		Ammonia (Phys-Chem)	High	Good (2015)
	Physico-chemical	BOD	-	-
		Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate	Good	Good (2015)
	Specific pollutants	Temperature Overall	High	Good (2015) High (2015)
	Specific polititalits	Overall	High -	Not Assessed
	Supporting elements (Surface Water)	Mitigation Measures Assessment	-	-
cal	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
CI	Other Pollutants	Overall	Does not require assessment	Does not require assessment
C (0) C		Polybrominated diphenyl	ethers (PBDE)	
Mitigation Measures Assessmen t	Reasons for not achieving Good Status	Mercury and Its Compoun	ds	
Water Body Level Measu				

Table B 7 Anton Upper WFD Water body information

	Water body name		Anton – Upper	
			GB107042022810	
	Water body ID Water body type		GB107042022810 River	
s				
tail	Management catchment Operational catchment		Test and Itchen	
Det			Test Upper and Middle	
φ	Hydromorphological desig	gnation	Heavily modified	
Water Body Details	Sensitive habitats		Nitrates Directive – Hamble E Hampshire Chalk Safeguard Zone – river test	stuary Eutrophic NVZ and
Wa	Current Overall Status		Good	
	Objective Status		Good	
	Ecological Status / Potent	ial	Good	
	Chemical Status		Does not require assessment	: (fail in 2019)
	Quality elements	Elements	Classification	Objective
	Quality ciciliento	Overall	Good	Good (2015)
		Fish	-	-
	Biological	Invertebrates	High	Good (2015)
	3	Macrophytes Sub		Not assessed (2017 –
		Element	Good	low confidence)
		Overall	Supports good	Supports good (2015)
_	Hydromorphological	Hydrological Regime	Does not support good	Supports good (2027 – low confidence)
ica		Overall	High	Good (2015)
Ecological		Acid Neutralising Capacity	-	-
Ê		Ammonia (Phys-Chem)	High	Good (2015)
	Physico-chemical	BOD	-	-
		Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate	High	Good (2015)
	Specific pollutants	Temperature Overall	High -	Good (2015) Not assessed
		Overall	Good	Good (2015)
	Supporting elements (Surface Water)	Mitigation Measures Assessment	Good	Good (2015)
a	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
cŀ	Other Pollutants	Overall	Does not require assessment	Does not require assessment
		Polybrominated diphenyl	ethers (PBDE)	
Mitigati on Measur es	Reasons for not achieving Good Status	Mercury and Its Compour	nds	
Mi Me	GOOD STATUS	Hydrological Regime		
>				
Body ⁄el ures				

Water Bod<mark>)</mark> Level Measures

Table B 8 Anton Lower WFD Water body information

	Water body name		Anton – Iower	
	Water body name			
	Water body ID		GB107042022780	
(0	Water body type		River	
ails	Management catchment		Test And Itchen	
Det	Operational catchment		Test Upper and Middle	
►	Hydromorphological desig	gnation	Not designated artificial or he	
Water Body Details	Sensitive habitats		Nitrates Directive (Hamble Es Hampshire Chalk) Safeguard zone (River Test)	tuary Eutrophic NVZ and
Ma	Current Overall Status		Moderate	
	Objective Status		Moderate	
	Ecological Status / Potent	ial	Moderate	
	Chemical Status		Does not require assessment	, fail in 2019
	Quality elements	Elements	Classification	Objective
	Quality elements	Liements	Classification	Good – 2027 low
		Overall	Moderate	confidence
	Biological	Fish	-	-
	0	Invertebrates Macrophytes Sub	High	Good (2015) Good – 2027 low
		Element	Moderate	confidence
		Overall	Supports good	Supports good (2015)
al	Hydromorphological	Hydrological Regime	Supports good	Supports good (2027) low confidence
gic		Overall	High	Good (2015)
Ecological		Acid Neutralising Capacity	-	-
ш		Ammonia (Phys-Chem)	High	Good (2015)
	Physico-chemical	BOD	-	-
		Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate	High	Good (2015)
	Specific pollutants	Temperature Overall	High High	Good (2015) High (2015)
		Overall	-	Not assessed
	Supporting elements (Surface Water)	Mitigation Measures Assessment	-	-
al	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
ц.	Other Pollutants	Overall	Does not require assessment	Does not require assessment
c 5		Polybrominated diphenyl	ethers (PBDE)	
atior ures sme	Reasons for not achieving	Mercury and Its Compour	lds	
Mitigation Measures Assessmen t	Good Status	Macrophytes and Phytobe	enthos Combined	
As As		Hydrological Regime – gr	oundwater abstraction	
ody es				

Table B 9 Pillhill Brook WFD Water body information

Water body name Water body ID				
		Pillhill Brook GB107042022790		
Water body type		River		
		Test and Itchen		
Management catchment				
Operational catchment		Test Upper and Middle		
Hydromorphological desig	ination			
Sensitive habitats		Hampshire Chalk)	tuary Eutrophic NVZ and	
Current Overall Status				
		-		
	iol .	-		
	a		(fail in 2010)	
	-			
Quality elements			Objective	
			Good (2015)	
Piological		-	- Cood (2015)	
DIDIOGICAI		Ŭ	Good (2015)	
		Moderate	-	
Linder and the line is a line	Overall	Supports good	Supports good (2015)	
Hydromorphological	Hydrological Regime	Supports good	Supports good (2015)	
	Overall	High	Good (2021)	
		-	Good (2015)	
		Link		
Physics chemical		0	Good (2015)	
Filysico-chemical			- Good (2015)	
			Good (2015)	
	Phosphate	High	Good (2021)	
	Temperature	High	Good (2015)	
Specific pollutants	Overall	High	High (2015)	
Supporting elements		-	Not assessed	
(Surface Water)		-	-	
Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)	
Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)	
Other Pollutants	Overall	Does not require assessment	Does not require assessment	
Reasons for not achieving	Polybrominated diphenyl	ethers (PBDE)		
Good Status	Mercury and Its Compounds			
	Hydromorphological desig Sensitive habitats Current Overall Status Objective Status Ecological Status / Potenti Chemical Status Quality elements Biological Hydromorphological Physico-chemical Specific pollutants Supporting elements (Surface Water) Priority hazardous substances Priority substances Other Pollutants Reasons for not achieving	Hydromorphological designation Sensitive habitats Current Overall Status Objective Status Ecological Status / Potential Chemical Status Quality elements Elements Biological Overall Hydromorphological Overall Hydromorphological Overall Hydromorphological Overall Hydrological Regime Overall Physico-chemical BOD Dissolved oxygen PH Phosphate Temperature Specific pollutants Overall Overall Supporting elements Overall Overall Mitigation Measures Assessment Overall Priority hazardous Overall Overall Other Pollutants Overall Polybrominated diphenyl	Hydromorphological designation Not designated artificial or here Sensitive habitats Nitrates Directive (Hamble Es Hampshire Chalk) Safeguard zone (river test) Current Overall Status Good Objective Status Good Ecological Status / Potential Good Quality elements Elements Classification Quality elements Overall Moderate Fish - Invertebrates High Macrophytes Sub Element Supports good Hydrological Regime Supports good Hydromorphological Overall Supports good Moderate Physico-chemical BOD - Dissolved oxygen High Acid Neutralising Capacity - - - Physico-chemical Overall High - BOD - - - - Physico-chemical Overall High - - BOD - - - - - Supporting elements (Surface Water) Overall - - <	

Table B 10 River Test upper WFD Water body information

	Water body name		River test – upper	
tails	Water body ID		GB107042022710	
	Water body type		River	
	Management catchment		Test and Itchen	
	Operational catchment			
De	Hydromorphological desig	ination	Test Upper and Middle Not designated artificial or heavily modified	
dy	Hydromorphological desig	Juation	Nitrates Directive (Hamble Estuary Eutrophic NVZ and	
Water Body Details	Sensitive habitats		Hampshire Chalk) Safeguard zone (river test)	
Ma	Current Overall Status		Good	
	Objective Status		-	
	Ecological Status / Potential		Good	
	Chemical Status		Does not require assessment (fail in 2019)	
	Quality elements	Elements	Classification	Objective
		Overall	Good	Good (2015)
		Fish	-	-
	Biological	Invertebrates	Good	Good (2015)
		Macrophytes Sub Element	Good	Good (2015)
		Overall	Supports good	Supports Good (2015)
	Hydromorphological	Hydrological Regime	High	Supports Good (2015)
a		Overall	High	Good (2015)
Ecological		Acid Neutralising Capacity	High	-
col		Ammonia (Phys-Chem)	High	Good (2015)
ш	Physico-chemical	BOD	-	-
		Dissolved oxygen	High	Good (2015)
		pH	High	Good (2015)
		Phosphate Temperature	High	Good (2015) Good (2015)
	Specific pollutants	Overall	High -	Not assessed
		Overall	-	Not assessed
	Supporting elements (Surface Water)	Mitigation Measures Assessment	-	-
al	Priority hazardous substances	Overall	Does not require assessment (fail in 2019)	Good (2063)
Chemical	Priority substances	Overall	Does not require assessment (good in 2019)	Good (2015)
ъ	Other Pollutants	Overall	Does not require assessment	Does not require assessment
a i ti	Reasons for not achieving	Polybrominated diphenyl ethers (PBDE)		
Mi ga or Me	Good Status	Mercury and Its Compour	ids	
Water Body Level Bati Measures on Mea		Overall Does not require assessment Does not require assessment		

Table B 11 Dever WFD Water body information

Water Body Detail s	Water body name	Dever
	Water body ID	GB107042022770
	Water body type	River

nal catchment rphological desig habitats Overall Status Status al Status / Potenti Status		Test Upper and Middle not designated artificial or hea Nitrates Directive (Hamble Es Hampshire Chalk) Safeguard zone (river test) Good Good Good Does not require assessment Classification Good	tuary Eutrophic NVZ and
habitats Overall Status Status al Status / Potenti Status	ial Elements Overall Fish	Nitrates Directive (Hamble Es Hampshire Chalk) Safeguard zone (river test) Good Good Good Does not require assessment Classification	tuary Eutrophic NVZ and (fail in 2019)
habitats Overall Status Status al Status / Potenti Status	ial Elements Overall Fish	Nitrates Directive (Hamble Es Hampshire Chalk) Safeguard zone (river test) Good Good Good Does not require assessment Classification	tuary Eutrophic NVZ and (fail in 2019)
e Status al Status / Potenti Status	Elements Overall Fish	Good Good Does not require assessment Classification	
al Status / Potenti Status	Elements Overall Fish	Good Does not require assessment Classification	
Status	Elements Overall Fish	Does not require assessment Classification	
	Overall Fish	Classification	
lements	Overall Fish		Objective
	Fish	Good	
			Good (2015)
	Invertebrates	-	-
		High	Good (2015)
	Macrophytes Sub	Good	Good (2015)
	Element Overall	Supporte good	
phological	Hydrological Regime	Supports good Supports good	Supports Good (2015) Supports Good (2015)
	Overall	High	Good (2015)
		High	-
		High	Good (2015)
hemical			-
			Good (2015)
	PH		Good (2015)
	Phosphate		Good (2015)
	Temperature	High	Good (2015)
ollutants	Overall	High	High (2015)
Supporting elements (Surface Water)	Overall	-	Not assessed
	Mitigation Measures Assessment	-	-
	Overall	Does not require assessment (fail in 2019)	Good (2063)
bstances	Overall	Does not require assessment (good in 2019)	Good (2015)
utants	Overall	Does not require assessment	Does not require assessment
for not achieving	Polybrominated diphenyl	ethers (PBDE)	
	Mercury and Its Compounds		
		Acid Neutralising Capacity Ammonia (Phys-Chem) BOD Dissolved oxygen pH Phosphate Temperature ollutants Overall gelements Water) Assessment uzardous overall overall overall ibstances Iutants For not achieving	Acid Neutralising Capacity High Ammonia (Phys-Chem) High BOD High Dissolved oxygen High pH High Phosphate High Temperature High overall High Overall - Mitigation Measures Assessment - Vater) Overall Does not require assessment (fail in 2019) Ibstances Overall Does not require assessment (good in 2019) Iutants Overall Does not require assessment for not achieving Polybrominated diphenyl ethers (PBDE)

Acronyms

Acronym	Acronym description		
AEP	Annual Exceedance Probability		
AMP	Asset Management Plan		
AMR	Annual Monitoring Report		
BAP	(UK) Biodiversity Action Plan		
BGS	British Geographical Society		
CAMS	Catchment Abstraction Management Strategy		
CDA	Critical Drainage Area		
CFMP	Catchment Flood Management Plan		
CROW	Countryside and Rights of Way Act		
CSO	Combined Sewer Overflow		
CWS	County Wildlife Sites		
DEFRA	Department for Environment, Food and Rural Affairs		
DG5	Director General Performance Measure 5		
DPD	Development Plan Documents		
DWF	Dry Weather Flow		
DYAA	Dry Year Annual Average		
DYCP	Dry Year Critical Period		
EIA	Environmental Impact Assessment		
FCERM	Flood and Coastal Erosion Risk Management		
FMS	Flood Risk Management Strategy		
TVC	Test Valley Catchment		
TVBC	Test Valley Borough Council		
FRA	Flood Risk Assessment		
FRMP	Flood Risk Management Plan		
FRR	Flood Risk Regulations (2009)		
FWMA	Flood and Water Management Act (2010)		
HOF	Hands-off flow		
HRA	Habitat Regulations Assessment		
IDB	Internal Drainage Board		
l/p/d	Litres per person per day		
l/h/d	Litres per household per day		
LFRMS	Local Flood Risk Management Strategy		
LLFA	Lead Local Flood Authority		
LPA	Local Planning Authority		
NNR / LNR	National Nature Reserve / Local Nature Reserve		
NPPF	National Planning Policy Framework		
NPPG	National Planning Practice Guidance		
NVZ	Nitrate Vulnerable Zone		
OAN	Objectively Assessed Need		
PCC	Per Capita Consumption		
PE	Population Equivalent		

Acronym	Acronym description	
PFRA	Preliminary Flood Risk Assessment	
RBMP	River Basin Management Plan	
RMA	Risk Management Authority	
SAC	Special Area of Conservation	
SFRA	Strategic Flood Risk Assessment	
SHMA	Strategic Housing Market Assessment	
SPA	Special Protection Area	
SPD	Supplementary Planning Document	
SSSI	Site of Special Scientific Interest	
SuDS	Sustainable Drainage Systems	
SWMP	Surface Water Management Plan	
uFMfSW	Updated Flood Map for Surface Water	
UKCIP	UK Climate Impacts Programme	
WCS	Water Cycle Study	
WFD	Water Framework Directive	
WRC	Water Recycling Centre	
WRMP	Water Resources Management Plan	
WRLTMP	Water Recycling Long Term Management Plan	
WRZ	Water Resource Zone	

Royal HaskoningDHV is an independent consultancy which integrates 140 years of engineering expertise with digital technologies and software solutions. As consulting engineers, we care deeply about our people, our clients and society at large. Through our mission Enhancing Society Together, we take responsibility for having a positive impact on the world. We constantly challenge ourselves and others to develop sustainable solutions to local and global issues related to the built environment and the industry.

Change is happening. And it's happening fast – from climate and digital transformation to customer demands and hybrid working. The speed and extent of these changes create complex challenges which cannot be addressed in isolation. New perspectives are needed to accommodate the broader societal and technological picture and meet the needs of our ever-changing world.

Backed by the expertise of over 6,000 colleagues working from offices in more than 20 countries across the world, we are helping organisations to turn these challenges into opportunities and make the transition to smart and sustainable operations. We do this by seamlessly integrating engineering and design knowledge, consulting skills, software and technology to deliver more added value for our clients and their asset lifecycle.

We act with integrity and transparency, holding ourselves to the highest standards of environmental and social governance. We are diverse and inclusive. We will not compromise the safety or well-being of our team or communities – no matter the circumstances.

We actively collaborate with clients from public and private sectors, partners and stakeholders in projects and initiatives. Our actions, big and small, are driving the positive change the world needs, and are enhancing society now and for the future.

Our head office is in the Netherlands, and we have offices across Europe, Asia, Africa, Australia and the Americas.

